Tomasz Baran

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4856589/publications.pdf

Version: 2024-02-01

430874 454955 1,130 30 18 30 h-index citations g-index papers 32 32 32 1458 citing authors docs citations times ranked all docs

#	Article	IF	CITATIONS
1	Multiâ€ŧechnical study of copper oxide on graphitic carbon nitride and its role in the photocatalytic reactions. Nano Select, 2021, 2, 389-397.	3.7	6
2	Copper-Nickel-Oxide Nanomaterial for Photoelectrochemical Hydrogen Evolution and Photocatalytic Degradation of Volatile Organic Compounds. Materials Research Bulletin, 2021, 142, 111418.	5. 2	17
3	Copper Oxide-Based Photocatalysts and Photocathodes: Fundamentals and Recent Advances. Molecules, 2021, 26, 7271.	3.8	19
4	Graphene-titanate photocatalyst and its use in an air purifying device - prototype demonstration in operational environment. , $2021, 5, .$		0
5	3D printer as a potential source of indoor air pollution. International Journal of Environmental Science and Technology, 2020, 17, 207-218.	3.5	35
6	Electrodeposited Cu thin layers as low cost and effective underlayers for Cu2O photocathodes in photoelectrochemical water electrolysis. Journal of Solid State Electrochemistry, 2020, 24, 339-355.	2.5	5
7	Electrochemically prepared copper/indium oxides photocathode for efficient photoelectrochemical hydrogen production. Solar Energy Materials and Solar Cells, 2020, 206, 110262.	6.2	9
8	Synthesis, characterization and activity of doped graphitic carbon nitride materials towards photocatalytic oxidation of volatile organic pollutants emitted from 3D printer. Journal of Photochemistry and Photobiology A: Chemistry, 2020, 391, 112355.	3.9	22
9	Determining the Efficiency of Photoelectrode Materials by Coupling Cavityâ€Microelectrode Tips and Scanning Electrochemical Microscopy. ChemElectroChem, 2020, 7, 2440-2447.	3.4	2
10	Doped Graphitic Carbon Nitride: Insights from Spectroscopy and Electrochemistry. Journal of Inorganic and Organometallic Polymers and Materials, 2020, 30, 3418-3428.	3.7	24
11	Copper zinc oxide heterostructure nanoflowers for hydrogen evolution. International Journal of Hydrogen Energy, 2019, 44, 27343-27353.	7.1	18
12	Photocatalytic H2 production over RuO2@ZnS and RuO2@CuS nanostructures. International Journal of Hydrogen Energy, 2019, 44, 14624-14634.	7.1	33
13	Achieving efficient H2O2 production by a visible-light absorbing, highly stable photosensitized TiO2. Applied Catalysis B: Environmental, 2019, 244, 303-312.	20.2	85
14	Reverse type I core - Cul /shell - CuO: A versatile heterostructure for photoelectrochemical applications. Electrochimica Acta, 2018, 266, 441-451.	5.2	15
15	Insight on doped ZnS and its activity towards photocatalytic removing of Cr(VI) from wastewater in the presence of organic pollutants. Materials Chemistry and Physics, 2018, 212, 103-112.	4.0	40
16	Photoelectrochemical and photocatalytic systems based on titanates for hydrogen peroxide formation. Journal of Electroanalytical Chemistry, 2018, 808, 395-402.	3.8	28
17	Type II Heterostructures: The Way Towards Improved Photoelectrochemical Activity of Graphitic Carbon Nitride. Journal of Inorganic and Organometallic Polymers and Materials, 2018, 28, 492-499.	3.7	18
18	Is 3D printing safe? Analysis of the thermal treatment of thermoplastics: ABS, PLA, PET, and nylon. Journal of Occupational and Environmental Hygiene, 2017, 14, D80-D85.	1.0	194

#	Article	IF	CITATIONS
19	Photosensitization of Cul–the role of visible light induced Cul → Cull transition in photocatalytic degradation of organic pollutants and inactivation of microorganisms. Photochemical and Photobiological Sciences, 2017, 16, 1079-1087.	2.9	22
20	Photosensitization and photocurrent switching effects in wide band gap semiconductors: Cul and TiO2 functionalized with iron and nickel complexes: from semiconductors to logic devices. Journal of Inorganic and Organometallic Polymers and Materials, 2017, 27, 436-445.	3.7	12
21	Operando and Time-Resolved X-Ray Absorption Spectroscopy for the Study of Photoelectrode Architectures. Electrochimica Acta, 2016, 207, 16-21.	5.2	17
22	An Efficient Cu _{<i>x</i>} O Photocathode for Hydrogen Production at Neutral pH: New Insights from Combined Spectroscopy and Electrochemistry. ACS Applied Materials & Samp; Interfaces, 2016, 8, 21250-21260.	8.0	39
23	Photocatalytic Carbon Dioxide Reduction at pâ€Type Copper(I) Iodide. ChemSusChem, 2016, 9, 2933-2938.	6.8	40
24	Solar energy utilization in the direct photocarboxylation of 2,3-dihydrofuran using CO ₂ . Faraday Discussions, 2015, 183, 413-427.	3.2	33
25	Zinc sulfide functionalized with ruthenium nanoparticles for photocatalytic reduction of CO2. Applied Catalysis B: Environmental, 2015, 178, 170-176.	20.2	120
26	An integrated photocatalytic/enzymatic system for the reduction of CO ₂ to methanol in bioglycerol–water. Beilstein Journal of Organic Chemistry, 2014, 10, 2556-2565.	2.2	53
27	Photocatalytic Carboxylation of Organic Substrates with Carbon Dioxide at Zinc Sulfide with Deposited Ruthenium Nanoparticles. ChemPlusChem, 2014, 79, 708-715.	2.8	53
28	Photoinduced hole injection in semiconductor-coordination compound systems. Coordination Chemistry Reviews, 2013, 257, 767-775.	18.8	48
29	Photocatalytic oxidation of volatile pollutants of air driven by visible light. Journal of Photochemistry and Photobiology A: Chemistry, 2012, 241, 8-12.	3.9	23
30	Hybrid Technologies for an Enhanced Carbon Recycling Based on the Enzymatic Reduction of CO ₂ to Methanol in Water: Chemical and Photochemical NADH Regeneration. ChemSusChem, 2012, 5, 373-378.	6.8	99