
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4855749/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Electrical properties of alkali-activated materials against Portland cement. Proceedings of Institution of Civil Engineers: Construction Materials, 2023, 176, 33-44.	0.7	6
2	Possibility of producing thermal insulation materials from cementitious materials without foaming agent or lightweight aggregate. Environmental Science and Pollution Research, 2022, 29, 3784-3793.	2.7	15
3	An Exploratory Study on Alkali-Activated Slag Blended with Microsize Metakaolin Particles Under the Effect of Seawater Attack and Tidal Zone. Arabian Journal for Science and Engineering, 2022, 47, 4499-4510.	1.7	8
4	An investigation on the performance of lightweight mortar-based geopolymer containing high-volume LECA aggregate against high temperatures. Environmental Science and Pollution Research, 2022, 29, 26631-26647.	2.7	5
5	An investigation of alkali-activated slag pastes containing recycled glass powder under the effect of elevated temperatures. Environmental Science and Pollution Research, 2022, 29, 28647-28660.	2.7	9
6	Valorization of quartz powder for drying shrinkage and carbonation resistance of alkali-activated slag cement. Environmental Science and Pollution Research, 2022, 29, 45191-45203.	2.7	5
7	An investigation of using seawater as mixing water for alkali-activated slag pastes. Innovative Infrastructure Solutions, 2022, 7, 1.	1.1	3
8	Traditional Cementitious Materials for Thermal Insulation. Arabian Journal for Science and Engineering, 2022, 47, 12931-12943.	1.7	9
9	Behavior of steel slag aggregate in mortar and concrete - A comprehensive overview. Journal of Building Engineering, 2022, 53, 104536.	1.6	16
10	Valorization of nano-PbO as an additive to modify the properties and radiation shielding of alkali-activated slag mortar. Materials Chemistry and Physics, 2022, 287, 126277.	2.0	9
11	Valorization of sugar beet waste as a foaming agent for metakaolin geopolymer activated with phosphoric acid. Construction and Building Materials, 2022, 344, 128240.	3.2	26
12	An Overview of Pumice Stone as a Cementitious Material – the Best Manual for Civil Engineer. Silicon, 2021, 13, 551-572.	1.8	19
13	An investigation on the effect of sea sand on the properties of fly ash geopolymer mortars. Innovative Infrastructure Solutions, 2021, 6, 1.	1.1	14
14	Effect of limestone powder onÂmechanical strength, durability and drying shrinkage of alkali-activated slag pastes. Innovative Infrastructure Solutions, 2021, 6, 1.	1.1	28
15	Properties and corrosion behaviour of applicable binary and ternary geopolymer blends. International Journal of Sustainable Engineering, 2021, 14, 1068-1080.	1.9	17
16	Evaluating the performance of high volume fly ash-blended-cement mortar individually containing nano- and ultrafine micro-magnesia. Journal of Building Engineering, 2021, 36, 102129.	1.6	10
17	Insulation efficiency of alkali-activated lightweight mortars containing different ratios of binder/expanded perlite fine aggregate. Innovative Infrastructure Solutions, 2021, 6, 1.	1.1	7
18	Valorization of fly ash as an additive for electric arc furnace slag geopolymer cement. Construction and Building Materials. 2021. 294. 123570.	3.2	32

#	Article	IF	CITATIONS
19	Effect of tidal zone and seawater attack on high-volume fly ash pastes enhanced with metakaolin and quartz powder in the marine environment. Microporous and Mesoporous Materials, 2021, 324, 111261.	2.2	20
20	The potential application of cement kiln dust-red clay brick waste-silica fume composites as unfired building bricks with outstanding properties and high ability to CO2-capture. Journal of Building Engineering, 2021, 42, 102479.	1.6	12
21	Solving the perpetual problem of imperative use heat curing for fly ash geopolymer cement by using sugar beet waste. Construction and Building Materials, 2021, 307, 124902.	3.2	12
22	An initial study about the effect of activated carbon nano-sheets from residual biomass of olive trees pellets on the properties of alkali-activated slag pastes. Journal of Building Engineering, 2021, 44, 102661.	1.6	9
23	Valorization of sugar beet waste as an additive for fly ash geopolymer cement cured at room temperature. Journal of Building Engineering, 2021, 44, 102989.	1.6	14
24	Ultra-lightweight porous materials fabrication and hazardous lead-stabilization through alkali-activation/sintering of different industrial solid wastes. Journal of Cleaner Production, 2020, 244, 118742.	4.6	29
25	Development of lime-pozzolan green binder: The influence of anhydrous gypsum and high ambient temperature curing. Journal of Building Engineering, 2020, 28, 101026.	1.6	11
26	An experimental investigation on the effects of barite/hematite on the radiation shielding properties of serpentine concretes. Progress in Nuclear Energy, 2020, 120, 103220.	1.3	55
27	Influence of Different Particle Sizes of Blast-Furnace Slag as a Fine Aggregate on Mechanical Strength and Abrasion Resistance of Concrete. Silicon, 2020, 12, 2365-2373.	1.8	11
28	Behavior of alkali-activated slag pastes blended with waste rubber powder under the effect of freeze/thaw cycles and severe sulfate attack. Construction and Building Materials, 2020, 265, 120716.	3.2	43
29	Performance of autoclaved alkali-activated metakaolin pastes blended with micro-size particles derivative from dehydroxylation of kaolinite. Construction and Building Materials, 2020, 248, 118671.	3.2	5
30	Preparation, physico-mechanical characteristics and durability of eco-alkali-activated binder from blast-furnace slag, cement kiln-by-pass dust and microsilica ternary system. Construction and Building Materials, 2020, 260, 119947.	3.2	15
31	Possibility of using different types of Egyptian serpentine as fine and coarse aggregates for concrete production. Materials and Structures/Materiaux Et Constructions, 2020, 53, 1.	1.3	20
32	Influence of heavyweight aggregates on the physico-mechanical and radiation attenuation properties of serpentine-based concrete. Construction and Building Materials, 2020, 260, 120473.	3.2	31
33	Effect of steel fibers on geopolymer properties – The best synopsis for civil engineer. Construction and Building Materials, 2020, 246, 118534.	3.2	55
34	Investigation on high-volume fly ash pastes modified with micro-size metakaolin subjected to high temperatures. Journal of Central South University, 2020, 27, 231-241.	1.2	17
35	Effect of ceramic waste powder on alkali-activated slag pastes cured in hot weather after exposure to elevated temperature. Cement and Concrete Composites, 2020, 111, 103617.	4.6	80
36	An initial study of using sugar-beet waste as a cementitious material. Construction and Building Materials, 2020, 250, 118843.	3.2	23

#	Article	IF	CITATIONS
37	Thermal resistance of alkali-activated metakaolin pastes containing nano-silica particles. Journal of Thermal Analysis and Calorimetry, 2019, 136, 609-620.	2.0	29
38	A synopsis manual about recycling steel slag as a cementitious material. Journal of Materials Research and Technology, 2019, 8, 4940-4955.	2.6	44
39	Potential use of limestone in metakaolin-based geopolymer activated with H3PO4 for thermal insulation. Construction and Building Materials, 2019, 229, 117088.	3.2	42
40	Evaluating the impact of nano-magnesium calcite waste on the performance of cement mortar in normal and sulfate-rich media. Construction and Building Materials, 2019, 203, 392-400.	3.2	21
41	Sustainable disposal of cement kiln dust in the production of cementitious materials. Journal of Cleaner Production, 2019, 232, 1218-1229.	4.6	47
42	Sustainable utilization of pretreated concrete waste in the production of one-part alkali-activated cement. Journal of Cleaner Production, 2019, 232, 318-328.	4.6	48
43	A short manual on natural pumice as a lightweight aggregate. Journal of Building Engineering, 2019, 25, 100802.	1.6	38
44	A Preliminary study on the use of magnetic, Zamzam, and sea water as mixing water for alkali-activated slag pastes. Construction and Building Materials, 2019, 207, 672-678.	3.2	32
45	Effect of nanoparticles on the properties of geopolymer materials. Magazine of Concrete Research, 2019, 71, 1283-1301.	0.9	35
46	A synopsis of carbonation of alkali-activated materials. Green Materials, 2019, 7, 118-136.	1.1	15
47	The effect of polypropylene, polyvinyl-alcohol, carbon and glass fibres on geopolymers properties. Materials Science and Technology, 2019, 35, 127-146.	0.8	59
48	Insulating and fire-resistant behaviour of metakaolin and fly ash geopolymer mortars. Proceedings of Institution of Civil Engineers: Construction Materials, 2019, 172, 37-44.	0.7	31
49	Lightweight expanded clay aggregate as a building material – An overview. Construction and Building Materials, 2018, 170, 757-775.	3.2	113
50	Positive impact performance of hybrid effect of nano-clay and silica nano-particles on composite cements. Construction and Building Materials, 2018, 190, 508-516.	3.2	44
51	Behavior of Alkali-Activated Metakaolin Pastes Blended with Quartz Powder Exposed to Seawater Attack. Journal of Materials in Civil Engineering, 2018, 30, .	1.3	29
52	Synergistic effects of curing conditions and magnesium oxide addition on the physico-mechanical properties and firing resistivity of Portland cement mortar. Construction and Building Materials, 2018, 176, 676-689.	3.2	21
53	Effect of quartz-powder on the properties of conventional cementitious materials and geopolymers. Materials Science and Technology, 2018, 34, 2043-2056.	0.8	21
54	An overview on rheology, mechanical properties and durability of high-volume slag used as a cement replacement in paste, mortar and concrete. Construction and Building Materials, 2018, 187, 89-117.	3.2	113

#	Article	IF	CITATIONS
55	An Investigation on HVS Paste Modified with Nano- \$\$hbox {SiO}_{2}\$\$ SiO 2 Imperiled to Elevated Temperatures. Arabian Journal for Science and Engineering, 2018, 43, 5165-5177.	1.7	6
56	An investigation on Portland cement replaced by high-volume GGBS pastes modified with micro-sized metakaolin subjected to elevated temperatures. International Journal of Sustainable Built Environment, 2017, 6, 91-101.	3.2	70
57	Effect of carbon nanotubes (CNTs) on the properties of traditional cementitious materials. Construction and Building Materials, 2017, 153, 81-101.	3.2	103
58	Phosphogypsum as a construction material. Journal of Cleaner Production, 2017, 166, 732-743.	4.6	331
59	Possibility of Using Metakaolin as Thermal Insulation Material. International Journal of Thermophysics, 2017, 38, 1.	1.0	10
60	A comprehensive overview about recycling rubber as fine aggregate replacement in traditional cementitious materials. International Journal of Sustainable Built Environment, 2016, 5, 46-82.	3.2	144
61	Characteristics, textural properties and fire resistance of cement pastes containing Fe2O3 nano-particles. Journal of Thermal Analysis and Calorimetry, 2016, 126, 1077-1087.	2.0	49
62	An investigation on alkali-activated fly ash pastes modified with quartz powder subjected to elevated temperatures. Construction and Building Materials, 2016, 122, 417-425.	3.2	38
63	Vermiculite as a construction material – A short guide for Civil Engineer. Construction and Building Materials, 2016, 125, 53-62.	3.2	99
64	An investigation on alkali-activated Egyptian metakaolin pastes blended with quartz powder subjected to elevated temperatures. Applied Clay Science, 2016, 132-133, 366-376.	2.6	43
65	A synopsis about perlite as building material – A best practice guide for Civil Engineer. Construction and Building Materials, 2016, 121, 338-353.	3.2	106
66	Cementitious materials and agricultural wastes as natural fine aggregate replacement in conventional mortar and concrete. Journal of Building Engineering, 2016, 5, 119-141.	1.6	66
67	Influence of the activator concentration of sodium silicate on the thermal properties of alkali-activated slag pastes. Construction and Building Materials, 2016, 102, 811-820.	3.2	84
68	An investigation on blast-furnace stag as fine aggregate in alkali-activated slag mortars subjected to elevated temperatures. Journal of Cleaner Production, 2016, 112, 1086-1096.	4.6	103
69	Recycled cathode ray tube and liquid crystal display glass as fine aggregate replacement in cementitious materials. Construction and Building Materials, 2015, 93, 1236-1248.	3.2	65
70	Physico-mechanical, microstructure characteristics and fire resistance of cement pastes containing Al 2 O 3 nano-particles. Construction and Building Materials, 2015, 91, 232-242.	3.2	98
71	Influence of different additives on the properties of sodium sulfate activated slag. Construction and Building Materials, 2015, 79, 379-389.	3.2	68
72	An investigation of high-volume fly ash concrete blended with slag subjected to elevated temperatures. Journal of Cleaner Production, 2015, 93, 47-55.	4.6	101

#	Article	IF	CITATIONS
73	An exploratory study on sodium sulphate-activated slag blended with Portland cement under the effect of thermal loads. Journal of Thermal Analysis and Calorimetry, 2015, 119, 1535-1545.	2.0	22
74	An exploratory study on sodium sulfate activated slag modified with Portland cement. Materials and Structures/Materiaux Et Constructions, 2015, 48, 4085-4095.	1.3	25
75	Potential Use of Silica Fume Coupled with Slag in HVFA Concrete Exposed to Elevated Temperatures. Journal of Materials in Civil Engineering, 2015, 27, .	1.3	25
76	A brief on high-volume Class F fly ash as cement replacement – A guide for Civil Engineer. International Journal of Sustainable Built Environment, 2015, 4, 278-306.	3.2	194
77	An exploratory study on high-volume fly ash concrete incorporating silica fume subjected to thermal loads. Journal of Cleaner Production, 2015, 87, 735-744.	4.6	80
78	An investigation on very high volume slag pastes subjected to elevated temperatures. Construction and Building Materials, 2015, 74, 249-258.	3.2	38
79	Potential use of phosphogypsum in alkali-activated fly ash under the effects of elevated temperatures and thermal shock cycles. Journal of Cleaner Production, 2015, 87, 717-725.	4.6	129
80	AN EXPLORATORY STUDY ON ALKALI-ACTIVATED SLAG PASTE BLENDED WITH MICRO METAKAOLIN SUBJECTED TO THERMAL LOADS. International Journal of Materials Engineering and Technology, 2015, 13, 187-217.	0.1	8
81	A Study on High Strength Concrete with Moderate Cement Content Incorporating Limestone Powder. Building Research Journal, 2014, 61, 43-58.	0.2	5
82	A comprehensive overview about the influence of different admixtures and additives on the properties of alkali-activated fly ash. Materials & Design, 2014, 53, 1005-1025.	5.1	254
83	A comprehensive overview about the effect of nano-SiO2 on some properties of traditional cementitious materials and alkali-activated fly ash. Construction and Building Materials, 2014, 52, 437-464.	3.2	103
84	Recycled waste glass as fine aggregate replacement in cementitious materials based on Portland cement. Construction and Building Materials, 2014, 72, 340-357.	3.2	211
85	An exploratory study on alkali-activated slag blended with quartz powder under the effect of thermal cyclic loads and thermal shock cycles. Construction and Building Materials, 2014, 70, 165-174.	3.2	21
86	Physico-chemical, mechanical, microstructure and durability characteristics of alkali activated Egyptian slag. Construction and Building Materials, 2014, 69, 60-72.	3.2	90
87	Effect of Silica Fume and Slag on Compressive Strength and Abrasion Resistance of HVFA Concrete. International Journal of Concrete Structures and Materials, 2014, 8, 69-81.	1.4	96
88	A comprehensive overview about the influence of different additives on the properties of alkali-activated slag – A guide for Civil Engineer. Construction and Building Materials, 2013, 47, 29-55.	3.2	282
89	Hydration and properties of sodium sulfate activated slag. Cement and Concrete Composites, 2013, 37, 20-29.	4.6	238
90	A synopsis about the effect of nano-Al2O3, nano-Fe2O3, nano-Fe3O4 and nano-clay on some properties of cementitious materials – A short guide for Civil Engineer. Materials & Design, 2013, 52, 143-157.	5.1	127

#	ARTICLE	IF	CITATIONS
91	Effects of ZnO2, ZrO2, Cu2O3, CuO, CaCO3, SF, FA, cement and geothermal silica waste nanoparticles on properties of cementitious materials – A short guide for Civil Engineer. Construction and Building Materials, 2013, 48, 1120-1133.	3.2	80
92	A preliminary study on the effect of fine aggregate replacement with metakaolin on strength and abrasion resistance of concrete. Construction and Building Materials, 2013, 44, 487-495.	3.2	66
93	A preliminary study of alkali-activated slag blended with silica fume under the effect of thermal loads and thermal shock cycles. Construction and Building Materials, 2013, 40, 522-532.	3.2	74
94	Metakaolin as cementitious material: History, scours, production and composition – A comprehensive overview. Construction and Building Materials, 2013, 41, 303-318.	3.2	348
95	Alkali-activated metakaolin: A short guide for civil Engineer – An overview. Construction and Building Materials, 2013, 41, 751-765.	3.2	211
96	Behavior of composite cement pastes containing microsilica and fly ash at elevated temperature. Construction and Building Materials, 2013, 38, 1180-1190.	3.2	93
97	Effect of chemical admixtures on loaded reinforced concrete columns in fire. Proceedings of Institution of Civil Engineers: Construction Materials, 2012, 165, 245-254.	0.7	4
98	Chemical and mechanical stability of sodium sulfate activated slag after exposure to elevated temperature. Cement and Concrete Research, 2012, 42, 333-343.	4.6	188
99	A preliminary study of blended pastes of cement and quartz powder under the effect of elevated temperature. Construction and Building Materials, 2012, 29, 672-681.	3.2	58
100	A preliminary study of autoclaved alkali-activated slag blended with quartz powder. Construction and Building Materials, 2012, 33, 70-77.	3.2	41
101	Flexural capacity of one-way GFRP concrete slabs. Proceedings of Institution of Civil Engineers: Construction Materials, 2011, 164, 143-152.	0.7	9
102	The effect of activator concentration on the residual strength of alkali-activated fly ash pastes subjected to thermal load. Construction and Building Materials, 2011, 25, 3098-3107.	3.2	208
103	Effect of elevated temperature on physico-mechanical properties of blended cement concrete. Construction and Building Materials, 2011, 25, 1009-1017.	3.2	127
104	Durability and strength evaluation of high-performance concrete in marine structures. Construction and Building Materials, 2010, 24, 878-884.	3.2	89
105	Coating protection of loaded RC columns to resist elevated temperature. Fire Safety Journal, 2009, 44, 241-249.	1.4	27
106	Effect of elevated temperature on physico-mechanical properties of metakaolin blended cement mortar. Structural Engineering and Mechanics, 2009, 31, 1-10.	1.0	33
107	An investigation on alkali-activated slag pastes containing quartz powder subjected to elevated temperatures. , 0, , 42-51.		3