Neal Lee Weintraub

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4855656/publications.pdf Version: 2024-02-01

222 papers	12,127 citations	23567 58 h-index	31849 101 g-index
225 all docs	225 docs citations	225 times ranked	15431 citing authors

#	Article	IF	CITATIONS
1	Incidence, risk factors, and mortality of atrial fibrillation in breast cancer: a SEER-Medicare analysis. European Heart Journal, 2022, 43, 300-312.	2.2	71
2	Role of prostaglandin D2 receptors in the pathogenesis of abdominal aortic aneurysm formation. Clinical Science, 2022, 136, 309-321.	4.3	3
3	Effect of Community and Socio-Economic Factors on Cardiovascular, Cancer and Cardio-Oncology Patients with COVID-19. Covid, 2022, 2, 350-368.	1.5	1
4	Cardiovascular conditions and obesity among gynecologic cancer survivors: Results from the 2020 behavioral risk factor surveillance system survey. Gynecologic Oncology, 2022, 165, 405-409.	1.4	6
5	Endothelinâ€1 response to wholeâ€body vibration in obese and normal weight individuals. Physiological Reports, 2022, 10, e15335.	1.7	1
6	Perivascular adipose tissue in autoimmune rheumatic diseases. Pharmacological Research, 2022, 182, 106354.	7.1	6
7	Assessing cardiovascular risk in cancer patients: opportunities and challenges. European Journal of Preventive Cardiology, 2021, 28, e45-e46.	1.8	5
8	Identification of critical molecular pathways involved in exosome-mediated improvement of cardiac function in a mouse model of muscular dystrophy. Acta Pharmacologica Sinica, 2021, 42, 529-535.	6.1	5
9	Adenosine kinase is critical for neointima formation after vascular injury by inducing aberrant DNA hypermethylation. Cardiovascular Research, 2021, 117, 561-575.	3.8	23
10	Nf1 heterozygous mice recapitulate the anthropometric and metabolic features of human neurofibromatosis type 1. Translational Research, 2021, 228, 52-63.	5.0	7
11	Chronic unpredictable stress induces depression-related behaviors by suppressing AgRP neuron activity. Molecular Psychiatry, 2021, 26, 2299-2315.	7.9	41
12	Macrophage Immunometabolism in Perivascular Adipose Tissue. Arteriosclerosis, Thrombosis, and Vascular Biology, 2021, 41, 731-733.	2.4	3
13	Cardiovascular Toxicities of Androgen Deprivation Therapy. Current Treatment Options in Oncology, 2021, 22, 47.	3.0	20
14	Role of histone deacetylase 9 in the development of adipose tissue senescence. FASEB Journal, 2021, 35, .	0.5	1
15	Perivascular adipose tissue (PVAT)â€derived leptin improves aortic endothelial function via attenuating endothelial glycolysis in a mouse model of lipodystrophy. FASEB Journal, 2021, 35, .	0.5	1
16	Outcomes in patients with anthracyclineâ€induced cardiomyopathy undergoing left ventricular assist devices implantation. ESC Heart Failure, 2021, 8, 2866-2875.	3.1	7
17	The Impaired Bioenergetics of Diabetic Cardiac Microvascular Endothelial Cells. Frontiers in Endocrinology, 2021, 12, 642857.	3.5	10
18	Histone deacetylase 9 promotes endothelial-mesenchymal transition and an unfavorable atherosclerotic plaque phenotype. Journal of Clinical Investigation, 2021, 131, .	8.2	36

#	Article	IF	CITATIONS
19	Aging-Associated Differences in Epitranscriptomic m6A Regulation in Response to Acute Cardiac Ischemia/Reperfusion Injury in Female Mice. Frontiers in Pharmacology, 2021, 12, 654316.	3.5	25
20	Three Technologies That Will Guide Revascularization of Chronic Coronary Syndrome Patients into the 21st Century: A Review. International Journal of Angiology, 2021, 30, 212-220.	0.6	0
21	Disruption of endothelial Pfkfb3 ameliorates diet-induced murine insulin resistance. Journal of Endocrinology, 2021, 250, 93-104.	2.6	5
22	A Novel Mechanism Underlying Inflammatory Smooth Muscle Phenotype in Abdominal Aortic Aneurysm. Circulation Research, 2021, 129, e202-e214.	4.5	20
23	Cardiovascular Events in Men with Prostate Cancer Receiving Hormone Therapy: An Analysis of the FDA Adverse Event Reporting System (FAERS). Journal of Urology, 2021, 206, 613-622.	0.4	18
24	Obesity and the Bidirectional Risk of Cancer and Cardiovascular Diseases in African Americans: Disparity vs. Ancestry. Frontiers in Cardiovascular Medicine, 2021, 8, 761488.	2.4	6
25	Cardiometabolic consequences of targeted anticancer therapies. Journal of Cardiovascular Pharmacology, 2021, Publish Ahead of Print, .	1.9	3
26	Endothelial AMPKα1/PRKAA1 exacerbates inflammation in HFDâ€fed mice. British Journal of Pharmacology, 2021, , .	5.4	4
27	Cardiovascular safety profile of taxanes and vinca alkaloids: 30 years FDA registry experience. Open Heart, 2021, 8, e001849.	2.3	8
28	Niacin protects against abdominal aortic aneurysm formation via GPR109A independent mechanisms: role of NAD+/nicotinamide. Cardiovascular Research, 2020, 116, 2226-2238.	3.8	40
29	Optimizing cardiac ischemic preconditioning and postconditioning via epitranscriptional regulation. Medical Hypotheses, 2020, 135, 109451.	1.5	10
30	Factors Predicting the Utilization of Center-Based Cardiac Rehabilitation Program. Geriatrics (Switzerland), 2020, 5, 66.	1.7	1
31	Glycolysis links reciprocal activation of myeloid cells and endothelial cells in the retinal angiogenic niche. Science Translational Medicine, 2020, 12, .	12.4	59
32	Perivascular Adipose Tissue and Vascular Perturbation/Atherosclerosis. Arteriosclerosis, Thrombosis, and Vascular Biology, 2020, 40, 2569-2576.	2.4	67
33	Commentary: Coronary artery bypass grafting before or after stenting; same game, different half?. Journal of Thoracic and Cardiovascular Surgery, 2020, , .	0.8	0
34	Profiling of Histone Modifications Reveals Epigenomic Dynamics During Abdominal Aortic Aneurysm Formation in Mouse Models. Frontiers in Cardiovascular Medicine, 2020, 7, 595011.	2.4	10
35	The Small GTPases Rab27b Regulates Mitochondrial Fatty Acid Oxidative Metabolism of Cardiac Mesenchymal Stem Cells. Frontiers in Cell and Developmental Biology, 2020, 8, 209.	3.7	11
36	Masked Hypotension due to Elevated Venous Pressure in a Patient with Complex Adult Congenital Heart Disease. Case Reports in Cardiology, 2020, 2020, 1-4.	0.2	0

#	Article	IF	CITATIONS
37	Effective restoration of dystrophin expression in iPSC Mdx-derived muscle progenitor cells using the CRISPR/Cas9 system and homology-directed repair technology. Computational and Structural Biotechnology Journal, 2020, 18, 765-773.	4.1	15
38	Prkaa1 Metabolically Regulates Monocyte/Macrophage Recruitment and Viability in Diet-Induced Murine Metabolic Disorders. Frontiers in Cell and Developmental Biology, 2020, 8, 611354.	3.7	3
39	Potential role of perivascular adipose tissue in modulating atherosclerosis. Clinical Science, 2020, 134, 3-13.	4.3	38
40	Using iRFP Genetic Labeling Technology to Track Tumorogenesis of Transplanted CRISPR/Cas9-Edited iPSC in Skeletal Muscle. Methods in Molecular Biology, 2020, 2126, 73-83.	0.9	1
41	Commentary: Are cardiac surgeons treating patients of lower socioeconomic status differently?. Journal of Thoracic and Cardiovascular Surgery, 2020, , .	0.8	0
42	Adenosine Kinase Inhibition Augments Conducted Vasodilation and Prevents Left Ventricle Diastolic Dysfunction in Heart Failure With Preserved Ejection Fraction. Circulation: Heart Failure, 2019, 12, e005762.	3.9	17
43	RNAase III-Type Enzyme Dicer Regulates Mitochondrial Fatty Acid Oxidative Metabolism in Cardiac Mesenchymal Stem Cells. International Journal of Molecular Sciences, 2019, 20, 5554.	4.1	8
44	Perivascular Adipocytes in Vascular Disease. Arteriosclerosis, Thrombosis, and Vascular Biology, 2019, 39, 2220-2227.	2.4	39
45	Copper Transporter ATP7A (Copper-Transporting P-Type ATPase/Menkes ATPase) Limits Vascular Inflammation and Aortic Aneurysm Development. Arteriosclerosis, Thrombosis, and Vascular Biology, 2019, 39, 2320-2337.	2.4	28
46	CRISPR/Cas9 Technology in Restoring Dystrophin Expression in iPSC-Derived Muscle Progenitors. Journal of Visualized Experiments, 2019, , .	0.3	4
47	PFKFB3-mediated endothelial glycolysis promotes pulmonary hypertension. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 13394-13403.	7.1	113
48	MiR322 mediates cardioprotection against ischemia/reperfusion injury via FBXW7/notch pathway. Journal of Molecular and Cellular Cardiology, 2019, 133, 67-74.	1.9	37
49	Epigenetic Regulation of Vascular Diseases. Arteriosclerosis, Thrombosis, and Vascular Biology, 2019, 39, 984-990.	2.4	45
50	Imaging and Tracking Stem Cell Engraftment in Ischemic Hearts by Near-Infrared Fluorescent Protein (iRFP) Labeling. Methods in Molecular Biology, 2019, 2150, 121-129.	0.9	6
51	Role of Arginase 2 in Systemic Metabolic Activity and Adipose Tissue Fatty Acid Metabolism in Diet-Induced Obese Mice. International Journal of Molecular Sciences, 2019, 20, 1462.	4.1	13
52	Enhancer of zeste homolog 2 (EZH2) regulates adipocyte lipid metabolism independent of adipogenic differentiation: Role of apolipoprotein E. Journal of Biological Chemistry, 2019, 294, 8577-8591.	3.4	22
53	Purification and Transplantation of Myogenic Progenitor Cell Derived Exosomes to Improve Cardiac Function in Duchenne Muscular Dystrophic Mice. Journal of Visualized Experiments, 2019, , .	0.3	6
54	Transient inhibition of neddylation at neonatal stage evokes reversible cardiomyopathy and predisposes the heart to isoproterenol-induced heart failure. American Journal of Physiology - Heart and Circulatory Physiology, 2019, 316, H1406-H1416.	3.2	14

#	Article	IF	CITATIONS
55	Proportionality at birth and left ventricular hypertrophy in healthy adolescents. Early Human Development, 2019, 132, 24-29.	1.8	2
56	Cardio-Oncology: Vascular and Metabolic Perspectives: A Scientific Statement From the American Heart Association. Circulation, 2019, 139, e579-e602.	1.6	142
57	miRNAs in Extracellular Vesicles from iPS-Derived Cardiac Progenitor Cells Effectively Reduce Fibrosis and Promote Angiogenesis in Infarcted Heart. Stem Cells International, 2019, 2019, 1-14.	2.5	22
58	Cardioprotection via the skin: nociceptor-induced conditioning against cardiac MI in the NIC of time. American Journal of Physiology - Heart and Circulatory Physiology, 2019, 316, H543-H553.	3.2	14
59	HDAC9 complex inhibition improves smooth muscle–dependent stenotic vascular disease. JCI Insight, 2019, 4, .	5.0	23
60	Targeting ATGL to rescue BSCL2 lipodystrophy and its associated cardiomyopathy. JCl Insight, 2019, 4, .	5.0	24
61	Obesityâ€induced metabolic and vascular dysregulation: Implication of arginase. FASEB Journal, 2019, 33, 514.9.	0.5	0
62	An HDAC9-MALAT1-BRG1 complex mediates smooth muscle dysfunction in thoracic aortic aneurysm. Nature Communications, 2018, 9, 1009.	12.8	105
63	β-arrestin-biased agonism of β-adrenergic receptor regulates Dicer-mediated microRNA maturation to promote cardioprotective signaling. Journal of Molecular and Cellular Cardiology, 2018, 118, 225-236.	1.9	13
64	Neddylation mediates ventricular chamber maturation through repression of Hippo signaling. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, E4101-E4110.	7.1	57
65	Deletion of the Duffy antigen receptor for chemokines (DARC) promotes insulin resistance and adipose tissue inflammation during high fat feeding. Molecular and Cellular Endocrinology, 2018, 473, 79-88.	3.2	12
66	A single high-fat meal provokes pathological erythrocyte remodeling and increases myeloperoxidase levels: implications for acute coronary syndrome. Laboratory Investigation, 2018, 98, 1300-1310.	3.7	23
67	Exosomes from Suxiao Jiuxin pill-treated cardiac mesenchymal stem cells decrease H3K27 demethylase UTX expression in mouse cardiomyocytes in vitro. Acta Pharmacologica Sinica, 2018, 39, 579-586.	6.1	46
68	Suxiao Jiuxin pill promotes exosome secretion from mouse cardiac mesenchymal stem cells in vitro. Acta Pharmacologica Sinica, 2018, 39, 569-578.	6.1	51
69	Effective regeneration of dystrophic muscle using autologous iPSC-derived progenitors with CRISPR-Cas9 mediated precise correction. Medical Hypotheses, 2018, 110, 97-100.	1.5	15
70	A carvedilol-responsive microRNA, miR-125b-5p protects the heart from acute myocardial infarction by repressing pro-apoptotic bak1 and klf13 in cardiomyocytes. Journal of Molecular and Cellular Cardiology, 2018, 114, 72-82.	1.9	72
71	PRKAA1/AMPKα1-driven glycolysis in endothelial cells exposed to disturbed flow protects against atherosclerosis. Nature Communications, 2018, 9, 4667.	12.8	82
72	Ablation of Myeloid ADK (Adenosine Kinase) Epigenetically Suppresses Atherosclerosis in ApoE ^{â^'/â^'} (Apolipoprotein E Deficient) Mice. Arteriosclerosis, Thrombosis, and Vascular Biology, 2018, 38, 2780-2792.	2.4	17

#	Article	IF	CITATIONS
73	Transplantation of Cardiac Mesenchymal Stem Cell-Derived Exosomes Promotes Repair in Ischemic Myocardium. Journal of Cardiovascular Translational Research, 2018, 11, 420-428.	2.4	80
74	Neurofibromin Deficiency Induces Endothelial Cell Proliferation and Retinal Neovascularization. , 2018, 59, 2520.		11
75	Exosome-Derived Dystrophin from Allograft Myogenic Progenitors Improves Cardiac Function in Duchenne Muscular Dystrophic Mice. Journal of Cardiovascular Translational Research, 2018, 11, 412-419.	2.4	19
76	How to prevent and manage radiation-induced coronary artery disease. Heart, 2018, 104, 1647-1653.	2.9	51
77	The lifelong impact of fetal growth restriction on cardiac development. Pediatric Research, 2018, 84, 537-544.	2.3	17
78	Understanding Obesity-Related Cardiovascular Disease. Circulation, 2018, 138, 64-66.	1.6	18
79	Regenerative Therapy for Cardiomyopathies. Journal of Cardiovascular Translational Research, 2018, 11, 357-365.	2.4	19
80	Remote Effects of Transplanted Perivascular Adipose Tissue on Endothelial Function and Atherosclerosis. Cardiovascular Drugs and Therapy, 2018, 32, 503-510.	2.6	37
81	A novel role for the Wnt inhibitor APCDD1 in adipocyte differentiation: Implications for diet-induced obesity. Journal of Biological Chemistry, 2017, 292, 6312-6324.	3.4	23
82	Deficiency of LRP1 in Mature Adipocytes Promotes Diet-Induced Inflammation and Atherosclerosis—Brief Report. Arteriosclerosis, Thrombosis, and Vascular Biology, 2017, 37, 1046-1049.	2.4	31
83	Role of Adipose Tissue Endothelial ADAM17 in Age-Related Coronary Microvascular Dysfunction. Arteriosclerosis, Thrombosis, and Vascular Biology, 2017, 37, 1180-1193.	2.4	49
84	Cardiac proteasome functional insufficiency plays a pathogenic role in diabetic cardiomyopathy. Journal of Molecular and Cellular Cardiology, 2017, 102, 53-60.	1.9	33
85	Regulation of endothelial intracellular adenosine via adenosine kinase epigenetically modulates vascular inflammation. Nature Communications, 2017, 8, 943.	12.8	69
86	Role of myeloperoxidase in abdominal aortic aneurysm formation: mitigation by taurine. American Journal of Physiology - Heart and Circulatory Physiology, 2017, 313, H1168-H1179.	3.2	50
87	Isolation of Extracellular Vesicles from Stem Cells. Methods in Molecular Biology, 2017, 1660, 389-394.	0.9	10
88	Endothelial adenosine A2a receptor-mediated glycolysis is essential for pathological retinal angiogenesis. Nature Communications, 2017, 8, 584.	12.8	77
89	Intracellular adenosine regulates epigenetic programming in endothelial cells to promote angiogenesis. EMBO Molecular Medicine, 2017, 9, 1263-1278.	6.9	64
90	MicroRNA-532 protects the heart in acute myocardial infarction, and represses prss23, a positive regulator of endothelial-to-mesenchymal transition. Cardiovascular Research, 2017, 113, 1603-1614.	3.8	62

#	Article	IF	CITATIONS
91	The Role of Perivascular Adipose Tissue in Non-atherosclerotic Vascular Disease. Frontiers in Physiology, 2017, 8, 969.	2.8	44
92	Long noncoding RNAs and their roles in skeletal muscle fate determination. Non-coding RNA Investigation, 2017, 1, 24-24.	0.6	17
93	Novel concepts in radiation-induced cardiovascular disease. World Journal of Cardiology, 2016, 8, 504.	1.5	105
94	Genomic-based diagnosis of arrhythmia disease in a personalized medicine era. Expert Review of Precision Medicine and Drug Development, 2016, 1, 497-504.	0.7	1
95	Berardinelli-Seip Congenital Lipodystrophy 2/Seipin Is Not Required for Brown Adipogenesis but Regulates Brown Adipose Tissue Development and Function. Molecular and Cellular Biology, 2016, 36, 2027-2038.	2.3	19
96	Inhibition of histone deacetylase reduces transcription of NADPH oxidases and ROS production and ameliorates pulmonary arterial hypertension. Free Radical Biology and Medicine, 2016, 99, 167-178.	2.9	83
97	Carvedilol-responsive microRNAs, miR-199a-3p and -214 protect cardiomyocytes from simulated ischemia-reperfusion injury. American Journal of Physiology - Heart and Circulatory Physiology, 2016, 311, H371-H383.	3.2	74
98	Aortic Aneurysm. Arteriosclerosis, Thrombosis, and Vascular Biology, 2016, 36, 2138-2140.	2.4	9
99	Role of growth hormone-releasing hormone in dyslipidemia associated with experimental type 1 diabetes. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 1895-1900.	7.1	16
100	Electrical stimulation to optimize cardioprotective exosomes from cardiac stem cells. Medical Hypotheses, 2016, 88, 6-9.	1.5	27
101	Identification of gene signatures regulated by carvedilol in mouse heart. Physiological Genomics, 2015, 47, 376-385.	2.3	6
102	A novel high throughput approach to screen for cardiac arrhythmic events following stem cell treatment. Medical Hypotheses, 2015, 84, 294-297.	1.5	1
103	Deficiency in Nrf2 transcription factor decreases adipose tissue mass and hepatic lipid accumulation in leptin-deficient mice. Obesity, 2015, 23, 335-344.	3.0	30
104	Exosomes/microvesicles from induced pluripotent stem cells deliver cardioprotective miRNAs and prevent cardiomyocyte apoptosis in the ischemic myocardium. International Journal of Cardiology, 2015, 192, 61-69.	1.7	350
105	Identification of Emergency Department Patients With Acute Heart Failure at LowÂRisk for 30-Day Adverse Events. JACC: Heart Failure, 2015, 3, 737-747.	4.1	83
106	Nox5 stability and superoxide production is regulated by C-terminal binding of Hsp90 and CO-chaperones. Free Radical Biology and Medicine, 2015, 89, 793-805.	2.9	39
107	Red Blood Cell Dysfunction Induced by High-Fat Diet. Circulation, 2015, 132, 1898-1908.	1.6	71
108	Berardinelli-Seip congenital lipodystrophy 2 regulates adipocyte lipolysis, browning, and energy balance in adult animals. Journal of Lipid Research, 2015, 56, 1912-1925.	4.2	31

#	Article	IF	CITATIONS
109	Histone Deacetylases and Cardiometabolic Diseases. Arteriosclerosis, Thrombosis, and Vascular Biology, 2015, 35, 1914-1919.	2.4	21
110	Upregulation of Programmed Death-1 and Its Ligand in Cardiac Injury Models: Interaction with GADD153. PLoS ONE, 2015, 10, e0124059.	2.5	74
111	Transplanted Perivascular Adipose Tissue Accelerates Injury-Induced Neointimal Hyperplasia. Arteriosclerosis, Thrombosis, and Vascular Biology, 2014, 34, 1723-1730.	2.4	98
112	Inhibition of stearoyl-coA desaturase selectively eliminates tumorigenic Nanog-positive cells: Improving the safety of iPS cell transplantation to myocardium. Cell Cycle, 2014, 13, 762-771.	2.6	31
113	Semaphorin 3A inactivation suppresses ischemia-reperfusion-induced inflammation and acute kidney injury. American Journal of Physiology - Renal Physiology, 2014, 307, F183-F194.	2.7	43
114	Enhancing stem cell survival in an ischemic heart by CRISPR-dCas9-based gene regulation. Medical Hypotheses, 2014, 83, 702-705.	1.5	7
115	Urinary semaphorin 3A correlates with diabetic proteinuria and mediates diabetic nephropathy and associated inflammation in mice. Journal of Molecular Medicine, 2014, 92, 1245-1256.	3.9	28
116	Proinflammatory Phenotype of Perivascular Adipocytes. Arteriosclerosis, Thrombosis, and Vascular Biology, 2014, 34, 1631-1636.	2.4	132
117	HDAC9 Knockout Mice Are Protected From Adipose Tissue Dysfunction and Systemic Metabolic Disease During High-Fat Feeding. Diabetes, 2014, 63, 176-187.	0.6	89
118	Role of histone deacetylase 9 in regulating adipogenic differentiation and high fat diet-induced metabolic disease. Adipocyte, 2014, 3, 333-338.	2.8	31
119	Assessing <i>in vitro</i> stemâ€cell function and tracking engraftment of stem cells in ischaemic hearts by using novel <scp>iRFP</scp> gene labelling. Journal of Cellular and Molecular Medicine, 2014, 18, 1889-1894.	3.6	25
120	miR-92a inhibits vascular smooth muscle cell apoptosis: role of the MKK4–JNK pathway. Apoptosis: an International Journal on Programmed Cell Death, 2014, 19, 975-983.	4.9	53
121	MiR-92a regulates viability and angiogenesis of endothelial cells under oxidative stress. Biochemical and Biophysical Research Communications, 2014, 446, 952-958.	2.1	41
122	Apolipoprotein E receptor-2 deficiency enhances macrophage susceptibility to lipid accumulation and cell death to augment atherosclerotic plaque progression and necrosis. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2014, 1842, 1395-1405.	3.8	28
123	Infrared Fluorescent Protein 1.4 Genetic Labeling Tracks Engrafted Cardiac Progenitor Cells in Mouse Ischemic Hearts. PLoS ONE, 2014, 9, e107841.	2.5	6
124	Cardiac progenitor-derived exosomes protect ischemic myocardium from acute ischemia/reperfusion injury. Biochemical and Biophysical Research Communications, 2013, 431, 566-571.	2.1	316
125	The Central Society for Clinical and Translational Research: more than just a name change. Translational Research, 2013, 162, 201-202.	5.0	2
126	Two-Step Protocol for Isolation and Culture of Cardiospheres. Methods in Molecular Biology, 2013, 1036, 75-80.	0.9	7

#	Article	IF	CITATIONS
127	Cooling the Fire of Atherosclerosis With Heat Shock Protein 27. Journal of the American College of Cardiology, 2013, 62, 1455-1456.	2.8	2
128	Apolipoprotein E2 Accentuates Postprandial Inflammation and Diet-Induced Obesity to Promote Hyperinsulinemia in Mice. Diabetes, 2013, 62, 382-391.	0.6	34
129	Human coronary artery perivascular adipocytes overexpress genes responsible for regulating vascular morphology, inflammation, and hemostasis. Physiological Genomics, 2013, 45, 697-709.	2.3	92
130	CD14 Directs Adventitial Macrophage Precursor Recruitment: Role in Early Abdominal Aortic Aneurysm Formation. Journal of the American Heart Association, 2013, 2, e000065.	3.7	51
131	Allele-Specific Expression of Angiotensinogen in Human Subcutaneous Adipose Tissue. Hypertension, 2013, 62, 41-47.	2.7	12
132	Cardiac-derived stem cell-based therapy for heart failure: progress and clinical applications. Experimental Biology and Medicine, 2013, 238, 294-300.	2.4	37
133	Assessment of Mitral Annular and Velocity Vector Imaging in Acute Myopericarditis. Echocardiography, 2013, 30, E227-30.	0.9	2
134	Zinc, copper, and blood pressure: Human population studies. Medical Science Monitor, 2013, 19, 1-8.	1.1	34
135	Identification of Stem Cells After Transplantation. Methods in Molecular Biology, 2013, 1036, 89-94.	0.9	2
136	Smooth Muscle LDL Receptor-Related Protein-1 Deletion Induces Aortic Insufficiency and Promotes Vascular Cardiomyopathy in Mice. PLoS ONE, 2013, 8, e82026.	2.5	13
137	Role of Uncoupled Endothelial Nitric Oxide Synthase in Abdominal Aortic Aneurysm Formation. Hypertension, 2012, 59, 158-166.	2.7	102
138	Apolipoprotein E4 Impairs Macrophage Efferocytosis and Potentiates Apoptosis by Accelerating Endoplasmic Reticulum Stress. Journal of Biological Chemistry, 2012, 287, 27876-27884.	3.4	79
139	Galectin 3 complements BNP in risk stratification in acute heart failure. Biomarkers, 2012, 17, 706-713.	1.9	45
140	Elevated urinary neutrophil gelatinaseâ€associated lipocalcin after acute heart failure treatment is associated with worsening renal function and adverse events. European Journal of Heart Failure, 2012, 14, 1020-1029.	7.1	42
141	Increased Expression of Nox1 in Neointimal Smooth Muscle Cells Promotes Activation of Matrix Metalloproteinase-9. Journal of Vascular Research, 2012, 49, 242-248.	1.4	36
142	The role of inflammation in health and disease: translating discovery into novel therapeutic approaches. Translational Research, 2012, 160, 97-98.	5.0	2
143	Cross Talk Between the Notch Signaling and Noncoding RNA on the Fate of Stem Cells. Progress in Molecular Biology and Translational Science, 2012, 111, 175-193.	1.7	13
144	Risk stratification in acute heart failure: Rationale and design of the STRATIFY and DECIDE studies. American Heart Journal, 2012, 164, 825-834.	2.7	31

#	Article	IF	CITATIONS
145	The Role of <i>Notch 1</i> Activation in Cardiosphere Derived Cell Differentiation. Stem Cells and Development, 2012, 21, 2122-2129.	2.1	27
146	Early changes in clinical characteristics after emergency department therapy for acute heart failure syndromes: identifying patients who do not respond to standard therapy. Heart Failure Reviews, 2012, 17, 387-394.	3.9	10
147	Human Macrophage ATP7A is Localized in the trans-Golgi Apparatus, Controls Intracellular Copper Levels, and Mediates Macrophage Responses to Dermal Wounds. Inflammation, 2012, 35, 167-175.	3.8	25
148	Soluble ST2 as a Diagnostic and Prognostic Marker for Acute Heart Failure Syndromes. Open Biomarkers Journal, 2012, 5, 1-8.	0.1	24
149	Relationship between Uric Acid Levels and Diagnostic and Prognostic Outcomes in Acute Heart Failure. Open Biomarkers Journal, 2012, 5, 9-15.	0.1	6
150	Changing Clinical Profiles and Timing of Enrollment in Acute Heart Failure Syndromes Clinical Trials. Journal of Cardiac Failure, 2011, 17, S84.	1.7	0
151	Low level bacterial endotoxin activates two distinct signaling pathways in human peripheral blood mononuclear cells. Journal of Inflammation, 2011, 8, 4.	3.4	22
152	Histone Deacetylase 9 Is a Negative Regulator of Adipogenic Differentiation. Journal of Biological Chemistry, 2011, 286, 27836-27847.	3.4	120
153	Response to Letter Regarding Article, "Peripheral Nociception Associated With Surgical Incision Elicits Remote Nonischemic Cardioprotection via Neurogenic Activation of Protein Kinase C Signaling― Circulation, 2010, 121, .	1.6	2
154	Acute Heart Failure Syndromes: Emergency Department Presentation, Treatment, and Disposition: Current Approaches and Future Aims. Circulation, 2010, 122, 1975-1996.	1.6	239
155	Participation of ATP7A in macrophage mediated oxidation of LDL. Journal of Lipid Research, 2010, 51, 1471-1477.	4.2	19
156	Turning ACS outside in: linking perivascular adipose tissue to acute coronary syndromes. American Journal of Physiology - Heart and Circulatory Physiology, 2010, 298, H734-H735.	3.2	9
157	Crosstalk between perivascular adipose tissue and blood vessels. Current Opinion in Pharmacology, 2010, 10, 191-196.	3.5	149
158	Society of Chest Pain Centers recommendations for the evaluation and management of the observation stay acute heart failure patient—part 1. Acute Cardiac Care, 2009, 11, 3-42.	0.2	43
159	Peripheral Nociception Associated With Surgical Incision Elicits Remote Nonischemic Cardioprotection Via Neurogenic Activation of Protein Kinase C Signaling. Circulation, 2009, 120, S1-9.	1.6	139
160	Proinflammatory Phenotype of Perivascular Adipocytes. Circulation Research, 2009, 104, 541-549.	4.5	458
161	Understanding Abdominal Aortic Aneurysm. New England Journal of Medicine, 2009, 361, 1114-1116.	27.0	155
162	Use of Bicycle Exercise Echocardiography for Unexplained Exertional Dyspnea. Clinical Cardiology, 2009, 32, 302-306.	1.8	6

#	Article	IF	CITATIONS
163	Spontaneous left main coronary artery dissection complicated by pseudoaneurysm formation in pregnancy: role of CT coronary angiography. Journal of Cardiothoracic Surgery, 2009, 4, 15.	1.1	27
164	Delta opioids attenuate proâ€inflammatory responses in human vascular cells. FASEB Journal, 2009, 23, 360.6.	0.5	0
165	Extracellular superoxide dismutase (ecSOD) in vascular biology: an update on exogenous gene transfer and endogenous regulators of ecSOD. Translational Research, 2008, 151, 68-78.	5.0	61
166	Proenkephalin expression and enkephalin release are widely observed in non-neuronal tissues. Peptides, 2008, 29, 83-92.	2.4	102
167	Surfactant protein D is expressed and modulates inflammatory responses in human coronary artery smooth muscle cells. American Journal of Physiology - Heart and Circulatory Physiology, 2008, 294, H2053-H2059.	3.2	33
168	Society of Chest Pain Centers Recommendations for the Evaluation and Management of the Observation Stay Acute Heart Failure Patient. Critical Pathways in Cardiology, 2008, 7, 83-121.	0.5	38
169	Risk Stratification. Critical Pathways in Cardiology, 2008, 7, 96-102.	0.5	2
170	Osteopontin. Arteriosclerosis, Thrombosis, and Vascular Biology, 2007, 27, 439-441.	2.4	6
171	Role of Oxidative Stress in the Pathogenesis of Abdominal Aortic Aneurysms. Arteriosclerosis, Thrombosis, and Vascular Biology, 2007, 27, 461-469.	2.4	284
172	Mechanisms of H2O2-induced oxidative stress in endothelial cells. Free Radical Biology and Medicine, 2006, 40, 2206-2213.	2.9	123
173	Deletion of p47 phox Attenuates Angiotensin II–Induced Abdominal Aortic Aneurysm Formation in Apolipoprotein E–Deficient Mice. Circulation, 2006, 114, 404-413.	1.6	189
174	Endotoxin, TLR4 Signaling and Vascular Inflammation: Potential Therapeutic Targets in Cardiovascular Disease. Current Pharmaceutical Design, 2006, 12, 4229-4245.	1.9	101
175	20-Hydroxyeicosatetraenoic acid is a potent dilator of mouse basilar artery: role of cyclooxygenase. American Journal of Physiology - Heart and Circulatory Physiology, 2006, 291, H2301-H2307.	3.2	38
176	14,15-Dihydroxyeicosatrienoic acid activates peroxisome proliferator-activated receptor-α. American Journal of Physiology - Heart and Circulatory Physiology, 2006, 290, H55-H63.	3.2	96
177	Vitamin E Inhibits Abdominal Aortic Aneurysm Formation in Angiotensin Il–Infused Apolipoprotein E–Deficient Mice. Arteriosclerosis, Thrombosis, and Vascular Biology, 2005, 25, 1671-1677.	2.4	165
178	ω-Oxidation of 20-Hydroxyeicosatetraenoic Acid (20-HETE) in Cerebral Microvascular Smooth Muscle and Endothelium by Alcohol Dehydrogenase 4. Journal of Biological Chemistry, 2005, 280, 33157-33164.	3.4	43
179	Activation of Peroxisome Proliferator-Activated Receptor α by Substituted Urea-Derived Soluble Epoxide Hydrolase Inhibitors. Journal of Pharmacology and Experimental Therapeutics, 2005, 314, 260-270.	2.5	64
180	Bacterial Pericarditis Due to Group F Streptococci as a Complication of Esophagomediastinal Fistula. Annals of Thoracic Surgery, 2005, 79, 2132-2134.	1.3	7

#	Article	IF	CITATIONS
181	Gene Therapy and Cardiovascular Diseases. , 2005, , 57-69.		0
182	20-Hydroxyeicosatetraenoic Acid (20-HETE) Metabolism in Coronary Endothelial Cells. Journal of Biological Chemistry, 2004, 279, 2648-2656.	3.4	50
183	Ghrelin Inhibits Proinflammatory Responses and Nuclear Factor-κB Activation in Human Endothelial Cells. Circulation, 2004, 109, 2221-2226.	1.6	459
184	Regulation of Endotoxin-Induced Proinflammatory Activation in Human Coronary Artery Cells: Expression of Functional Membrane-Bound CD14 by Human Coronary Artery Smooth Muscle Cells. Journal of Immunology, 2004, 173, 1336-1343.	0.8	83
185	Effect of soluble epoxide hydrolase inhibition on epoxyeicosatrienoic acid metabolism in human blood vessels. American Journal of Physiology - Heart and Circulatory Physiology, 2004, 287, H2412-H2420.	3.2	76
186	Potential Role of Endotoxin as a Proinflammatory Mediator of Atherosclerosis. Arteriosclerosis, Thrombosis, and Vascular Biology, 2004, 24, 2227-2236.	2.4	248
187	Enhanced Cytomegalovirus Infection in Atherosclerotic Human Blood Vessels. American Journal of Pathology, 2004, 164, 589-600.	3.8	43
188	Epoxyeicosatrienoic acids (EETs): metabolism and biochemical function. Progress in Lipid Research, 2004, 43, 55-90.	11.6	514
189	Protective Effects of Ghrelin on Ischemia/Reperfusion Injury in the Isolated Rat Heart. Journal of Cardiovascular Pharmacology, 2004, 43, 165-170.	1.9	156
190	Antioxidant effects of statins. Drugs of Today, 2004, 40, 975.	2.4	120
191	Activation of NAD(P)H oxidase by lipid hydroperoxides: mechanism of oxidant-mediated smooth muscle cytotoxicity. Free Radical Biology and Medicine, 2003, 34, 937-946.	2.9	41
192	Differences in positional esterification of 14,15-epoxyeicosatrienoic acid in phosphatidylcholine of porcine coronary artery endothelial and smooth muscle cells. Prostaglandins and Other Lipid Mediators, 2003, 71, 33-42.	1.9	22
193	Arachidonic Acid-Induced Vasodilation of Rat Small Mesenteric Arteries Is Lipoxygenase-Dependent. Journal of Pharmacology and Experimental Therapeutics, 2003, 304, 139-144.	2.5	42
194	Impaired Hypoxic Coronary Vasodilation and ATP-Sensitive Potassium Channel Function. Circulation Research, 2003, 92, 127-129.	4.5	14
195	Reactive oxygen species mediate arachidonic acid-induced dilation in porcine coronary microvessels. American Journal of Physiology - Heart and Circulatory Physiology, 2003, 285, H2309-H2315.	3.2	45
196	Low-Level Endotoxin Induces Potent Inflammatory Activation of Human Blood Vessels. Arteriosclerosis, Thrombosis, and Vascular Biology, 2003, 23, 1576-1582.	2.4	111
197	Redox factor-1 contributes to the regulation of progression from G0/G1 to S by PDGF in vascular smooth muscle cells. American Journal of Physiology - Heart and Circulatory Physiology, 2003, 285, H804-H812.	3.2	38
198	Oxidative Stress in Human Abdominal Aortic Aneurysms. Arteriosclerosis, Thrombosis, and Vascular Biology, 2002, 22, 560-565.	2.4	241

#	Article	IF	CITATIONS
199	Antioxidant therapy for atherosclerotic vascular disease: the promise and the pitfalls. American Journal of Physiology - Heart and Circulatory Physiology, 2002, 282, H797-H802.	3.2	29
200	Human coronary endothelial cells convert 14,15-EET to a biologically active chain-shortened epoxide. American Journal of Physiology - Heart and Circulatory Physiology, 2002, 283, H2306-H2314.	3.2	42
201	Nox Response to Injury. Arteriosclerosis, Thrombosis, and Vascular Biology, 2002, 22, 4-5.	2.4	22
202	12-Lipoxygenase in porcine coronary microcirculation: implications for coronary vasoregulation. American Journal of Physiology - Heart and Circulatory Physiology, 2001, 280, H693-H704.	3.2	53
203	Endothelium-derived hyperpolarizing factor in coronary microcirculation: responses to arachidonic acid. American Journal of Physiology - Heart and Circulatory Physiology, 2001, 281, H1553-H1560.	3.2	17
204	Arachidonate dilates basilar artery by lipoxygenase-dependent mechanism and activation of K ⁺ channels. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2001, 281, R246-R253.	1.8	51
205	Dihydroxyeicosatrienoic acids are potent activators of Ca 2+ â€activated K + channels in isolated rat coronary arterial myocytes. Journal of Physiology, 2001, 534, 651-667.	2.9	76
206	Pathways of Epoxyeicosatrienoic Acid Metabolism in Endothelial Cells. Journal of Biological Chemistry, 2001, 276, 14867-14874.	3.4	179
207	H2O2-induced Oâ ^r ª2Production by a Non-phagocytic NAD(P)H Oxidase Causes Oxidant Injury. Journal of Biological Chemistry, 2001, 276, 29251-29256.	3.4	236
208	Enhanced H ₂ O ₂ -Induced Cytotoxicity in "Epithelioid―Smooth Muscle Cells. Arteriosclerosis, Thrombosis, and Vascular Biology, 2000, 20, 1473-1479.	2.4	39
209	Conversion of epoxyeicosatrienoic acids (EETs) to chain-shortened epoxy fatty acids by human skin fibroblasts. Journal of Lipid Research, 2000, 41, 66-74.	4.2	29
210	Epoxide hydrolases regulate epoxyeicosatrienoic acid incorporation into coronary endothelial phospholipids. American Journal of Physiology - Heart and Circulatory Physiology, 1999, 277, H2098-H2108.	3.2	59
211	Epoxyeicosatrienoic Acids Increase Intracellular Calcium Concentration in Vascular Smooth Muscle Cells. Hypertension, 1999, 34, 1242-1246.	2.7	65
212	Overexpression of Human Catalase Inhibits Proliferation and Promotes Apoptosis in Vascular Smooth Muscle Cells. Circulation Research, 1999, 85, 524-533.	4.5	201
213	Effects of epoxyeicosatrienoic acids on the cardiac sodium channels in isolated rat ventricular myocytes. Journal of Physiology, 1999, 519, 153-168.	2.9	92
214	Epoxyeicosatrienoic Acids and Dihydroxyeicosatrienoic Acids Are Potent Vasodilators in the Canine Coronary Microcirculation. Circulation Research, 1998, 83, 932-939.	4.5	226
215	Overexpression of Human Superoxide Dismutase Inhibits Oxidation of Low-Density Lipoprotein by Endothelial Cells. Circulation Research, 1998, 82, 1289-1297.	4.5	86
216	14,15-Epoxyeicosatrienoic acid inhibits prostaglandin E2 production in vascular smooth muscle cells. American Journal of Physiology - Heart and Circulatory Physiology, 1998, 275, H2113-H2121.	3.2	33

#	Article	IF	CITATIONS
217	Cytochrome P-450 pathway in acetylcholine-induced canine coronary microvascular vasodilation in vivo. American Journal of Physiology - Heart and Circulatory Physiology, 1998, 274, H283-H289.	3.2	32
218	Potentiation of Endothelium-Dependent Relaxation by Epoxyeicosatrienoic Acids. Circulation Research, 1997, 81, 258-267.	4.5	108
219	Functional Implications of a Newly Characterized Pathway of 11,12-Epoxyeicosatrienoic Acid Metabolism in Arterial Smooth Muscle. Circulation Research, 1996, 79, 784-793.	4.5	85
220	Relationship of Arachidonic Acid Release to Porcine Coronary Artery Relaxation. Hypertension, 1995, 26, 684-690.	2.7	18
221	Newer concepts in the medical management of patients with congestive heart failure. Clinical Cardiology, 1993, 16, 380-390.	1.8	7
222	A Comprehensive Research Schema for the Characterization of Aortic Aneurysms. International Journal of Angiology, 0, , .	0.6	0