List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4855616/publications.pdf Version: 2024-02-01

FSSAID AIT RADKA

#	Article	IF	CITATIONS
1	Role of plant extracts and essential oils in fighting against postharvest fruit pathogens and extending fruit shelf life: A review. Trends in Food Science and Technology, 2022, 120, 402-417.	7.8	64
2	D-Tagatose-Based Product Triggers Sweet Immunity and Resistance of Grapevine to Downy Mildew, but Not to Gray Mold Disease. Plants, 2022, 11, 296.	1.6	7
3	Citrus Stubborn Disease: Current Insights on an Enigmatic Problem Prevailing in Citrus Orchards. Microorganisms, 2022, 10, 183.	1.6	3
4	Pseudomonas Lipopeptide-Mediated Biocontrol: Chemotaxonomy and Biological Activity. Molecules, 2022, 27, 372.	1.7	14
5	Foliar Application of a Tagatose-Based Product Reduces Downy Mildew Symptoms through Induction of Grapevine Resistance and Anti-Oomycete Action. Agronomy, 2022, 12, 498.	1.3	4
6	Biological Control of Plant Pathogens: A Global Perspective. Microorganisms, 2022, 10, 596.	1.6	223
7	A Novel Route for Double-Layered Encapsulation of Streptomyces fulvissimus Uts22 by Alginate–Arabic Gum for Controlling of Pythium aphanidermatum in Cucumber. Agronomy, 2022, 12, 655.	1.3	33
8	Isolation and Identification of Lipopeptide-Producing Bacillus velezensis Strains from Wheat Phyllosphere with Antifungal Activity against the Wheat Pathogen Zymoseptoria tritici. Agronomy, 2022, 12, 95.	1.3	11
9	Plasmopara viticola the Causal Agent of Downy Mildew of Grapevine: From Its Taxonomy to Disease Management. Frontiers in Microbiology, 2022, 13, .	1.5	29
10	A Panoramic View on Grapevine Trunk Diseases Threats: Case of Eutypa Dieback, Botryosphaeria Dieback, and Esca Disease. Journal of Fungi (Basel, Switzerland), 2022, 8, 595.	1.5	23
11	Plant Beneficial Bacteria as Bioprotectants against Wheat and Barley Diseases. Journal of Fungi (Basel,) Tj ETQq1	1 0.7843	14.rgBT /Ove
12	Combination of Sodium Bicarbonate (SBC) with Bacterial Antagonists for the Control of Brown Rot Disease of Fruit. Journal of Fungi (Basel, Switzerland), 2022, 8, 636.	1.5	9
13	Development of a DNA-Based Real-Time PCR Assay To Quantify <i>Allorhizobium vitis</i> Over Time in Grapevine (<i>Vitis vinifera</i> L.) Plantlets. Plant Disease, 2021, 105, 384-391.	0.7	1
14	Rare Sugars: Recent Advances and Their Potential Role in Sustainable Crop Protection. Molecules, 2021, 26, 1720.	1.7	35
15	Advances in Wheat Physiology in Response to Drought and the Role of Plant Growth Promoting Rhizobacteria to Trigger Drought Tolerance. Microorganisms, 2021, 9, 687.	1.6	54
16	A biological agent modulates the physiology of barley infected with Drechslera teres. Scientific Reports, 2021, 11, 8330.	1.6	9
17	Pyrenophora teres: Taxonomy, Morphology, Interaction With Barley, and Mode of Control. Frontiers in Plant Science, 2021, 12, 614951.	1.7	22
18	Biological Control of Pythium aphanidermatum, the Causal Agent of Tomato Root Rot by Two Streptomyces Root Symbionts. Agronomy, 2021, 11, 846.	1.3	32

#	Article	IF	CITATIONS
19	A sensitive chemiluminescence method for quantification of the oxidative burst in grapevine cells and rice roots. Plant Science, 2021, 307, 110892.	1.7	2
20	The Durability of Quantitative Host Resistance and Variability in Pathogen Virulence in the Interaction Between European Grapevine Cultivars and Plasmopara viticola. Frontiers in Agronomy, 2021, 3, .	1.5	11
21	Beneficial Microorganisms to Control the Gray Mold of Grapevine: From Screening to Mechanisms. Microorganisms, 2021, 9, 1386.	1.6	7
22	The Differential Growth Inhibition of Phytophthora spp. Caused by the Rare Sugar Tagatose Is Associated With Species-Specific Metabolic and Transcriptional Changes. Frontiers in Microbiology, 2021, 12, 711545.	1.5	9
23	Exploring Two Streptomyces Species to Control Rhizoctonia solani in Tomato. Agronomy, 2021, 11, 1384.	1.3	25
24	Phytopythium vexans Associated with Apple and Pear Decline in the SaÃ⁻ss Plain of Morocco. Microorganisms, 2021, 9, 1916.	1.6	9
25	Improving the Biocontrol Potential of Bacterial Antagonists with Salicylic Acid against Brown Rot Disease and Impact on Nectarine Fruits Quality. Agronomy, 2021, 11, 209.	1.3	19
26	Gene expression and metabolite analysis in barley inoculated with net blotch fungus and plant growth-promoting rhizobacteria. Plant Physiology and Biochemistry, 2021, 168, 488-500.	2.8	5
27	High-throughput molecular technologies for unraveling the mystery of soil microbial community: challenges and future prospects. Heliyon, 2021, 7, e08142.	1.4	24
28	Synthetic Mono-Rhamnolipids Display Direct Antifungal Effects and Trigger an Innate Immune Response in Tomato against Botrytis Cinerea. Molecules, 2020, 25, 3108.	1.7	27
29	The Potential of Novel Bacterial Isolates from Natural Soil for the Control of Brown Rot Disease (Monilinia fructigena) on Apple Fruits. Agronomy, 2020, 10, 1814.	1.3	23
30	The mode of action of plant associated Burkholderia against grey mould disease in grapevine revealed through traits and genomic analyses. Scientific Reports, 2020, 10, 19393.	1.6	17
31	Induction of systemic resistance to <i>Agrobacterium tumefaciens</i> by endophytic bacteria in grapevine. Plant Pathology, 2020, 69, 827-837.	1.2	31
32	Expression Analysis of Cell Wall-Related Genes in the Plant Pathogenic Fungus Drechslera teres. Genes, 2020, 11, 300.	1.0	7
33	The Rare Sugar Tagatose Differentially Inhibits the Growth of Phytophthora infestans and Phytophthora cinnamomi by Interfering With Mitochondrial Processes. Frontiers in Microbiology, 2020, 11, 128.	1.5	15
34	Screening of endophytic bacteria isolated from domesticated and wild growing grapevines as potential biological control agents against crown gall disease. BioControl, 2019, 64, 723-735.	0.9	15
35	Biological control of Paecilomyces formosus, the causal agent of dieback and canker diseases of pistachio by two strains of Streptomyces misionensis. Biological Control, 2019, 137, 104029.	1.4	23
36	Biofilm-Constructing Variants of Paraburkholderia phytofirmans PsJN Outcompete the Wild-Type Form in Free-Living and Static Conditions but Not <i>In Planta</i> . Applied and Environmental Microbiology, 2019, 85, .	1.4	6

#	Article	IF	CITATIONS
37	On a Cold Night: Transcriptomics of Grapevine Flower Unveils Signal Transduction and Impacted Metabolism. International Journal of Molecular Sciences, 2019, 20, 1130.	1.8	9
38	Genome sequencing and traits analysis of Burkholderia strains reveal a promising biocontrol effect against grey mould disease in grapevine (Vitis vinifera L.). World Journal of Microbiology and Biotechnology, 2019, 35, 40.	1.7	12
39	Impact of Paraburkholderia phytofirmans PsJN on Grapevine Phenolic Metabolism. International Journal of Molecular Sciences, 2019, 20, 5775.	1.8	13
40	Draft Genome Sequence of Burkholderia reimsis BE51, a Plant-Associated Bacterium Isolated from Agricultural Rhizosphere. Microbiology Resource Announcements, 2018, 7, .	0.3	8
41	Impacts of Paraburkholderia phytofirmans Strain PsJN on Tomato (Lycopersicon esculentum L.) Under High Temperature. Frontiers in Plant Science, 2018, 9, 1397.	1.7	56
42	Paraburkholderia phytofirmans PsJN-Plants Interaction: From Perception to the Induced Mechanisms. Frontiers in Microbiology, 2018, 9, 2093.	1.5	69
43	Osmotic Stress and ABA Affect Immune Response and Susceptibility of Grapevine Berries to Gray Mold by Priming Polyamine Accumulation. Frontiers in Plant Science, 2018, 9, 1010.	1.7	28
44	<i>Pseudomonas knackmussii</i> MLR6, a rhizospheric strain isolated from halophyte, enhances salt tolerance in <i>Arabidopsis thaliana</i> . Journal of Applied Microbiology, 2018, 125, 1836-1851.	1.4	26
45	Draft Genome Sequence of Plant Growth-Promoting Burkholderia sp. Strain BE12, Isolated from the Rhizosphere of Maize. Genome Announcements, 2018, 6, .	0.8	4
46	Leaf vs. inflorescence: differences in photosynthetic activity of grapevine. Photosynthetica, 2017, 55, 58-68.	0.9	15
47	How Streptomyces anulatus Primes Grapevine Defenses to Cope with Gray Mold: A Study of the Early Responses of Cell Suspensions. Frontiers in Plant Science, 2017, 8, 1043.	1.7	12
48	Burkholderia phytofirmans PsJN Confers Grapevine Resistance against Botrytis cinerea via a Direct Antimicrobial Effect Combined with a Better Resource Mobilization. Frontiers in Plant Science, 2016, 7, 1236.	1.7	86
49	Effectiveness of Postharvest Treatment with Chitosan to Control Citrus Green Mold. Agriculture (Switzerland), 2016, 6, 12.	1.4	33
50	Taxonomy, Physiology, and Natural Products of Actinobacteria. Microbiology and Molecular Biology Reviews, 2016, 80, 1-43.	2.9	1,395
51	Burkholderia phytofirmans PsJN reduces impact of freezing temperatures on photosynthesis in Arabidopsis thaliana. Frontiers in Plant Science, 2015, 6, 810.	1.7	99
52	Cross-talk between environmental stresses and plant metabolism during reproductive organ abscission. Journal of Experimental Botany, 2015, 66, 1707-1719.	2.4	111
53	Cold-night responses in grapevine inflorescences. Plant Science, 2015, 239, 115-127.	1.7	8
54	Inflorescences vs leaves: a distinct modulation of carbon metabolism process during <i>Botrytis</i> infection. Physiologia Plantarum, 2015, 154, 162-177.	2.6	4

#	Article	IF	CITATIONS
55	Cyclic lipopeptides from <i><scp>B</scp>acillus subtilis</i> activate distinct patterns of defence responses in grapevine. Molecular Plant Pathology, 2015, 16, 177-187.	2.0	133
56	Recent advances in Citrus psorosis virus. VirusDisease, 2014, 25, 261-276.	1.0	18
57	Purification of antibiotics from the biocontrol agent Streptomyces anulatus S37 by centrifugal partition chromatography. Journal of Chromatography B: Analytical Technologies in the Biomedical and Life Sciences, 2014, 944, 30-34.	1.2	23
58	Interaction of Ulocladium atrum, a Potential Biological Control Agent, with Botrytis cinerea and Grapevine Plantlets. Agronomy, 2013, 3, 632-647.	1.3	12
59	<i>Burkholderia phytofirmans</i> PsJN Primes <i>Vitis vinifera</i> L. and Confers a Better Tolerance to Low Nonfreezing Temperatures. Molecular Plant-Microbe Interactions, 2012, 25, 241-249.	1.4	198
60	<i>Burkholderia phytofirmans</i> PsJN Acclimates Grapevine to Cold by Modulating Carbohydrate Metabolism. Molecular Plant-Microbe Interactions, 2012, 25, 496-504.	1.4	199
61	Physiological and molecular changes in plants grown at low temperatures. Planta, 2012, 235, 1091-1105.	1.6	513
62	Comparative analysis of defence responses induced by the endophytic plant growth-promoting rhizobacterium Burkholderia phytofirmans strain PsJN and the non-host bacterium Pseudomonas syringae pv. pisi in grapevine cell suspensions. Journal of Experimental Botany, 2011, 62, 595-603.	2.4	146
63	Streptomyces thinghirensis sp. nov., isolated from rhizosphere soil of Vitis vinifera. International Journal of Systematic and Evolutionary Microbiology, 2009, 59, 3063-3067.	0.8	22
64	Antagonistic actinomycetes from Moroccan soil to control the grapevine gray mold. World Journal of Microbiology and Biotechnology, 2009, 25, 81-91.	1.7	106
65	Diversity and occurrence of <i>Burkholderia</i> spp. in the natural environment. FEMS Microbiology Reviews, 2008, 32, 607-626.	3.9	368
66	Endophytic colonization of Vitis vinifera L. by Burkholderia phytofirmans strain PsJN: from the rhizosphere to inflorescence tissues. FEMS Microbiology Ecology, 2008, 63, 84-93.	1.3	213
67	Biological control of bayoud disease in date palm: Selection of microorganisms inhibiting the causal agent and inducing defense reactions. Environmental and Experimental Botany, 2007, 59, 224-234.	2.0	53
68	Enhancement of Chilling Resistance of Inoculated Grapevine Plantlets with a Plant Growth-Promoting Rhizobacterium, Burkholderia phytofirmans Strain PsJN. Applied and Environmental Microbiology, 2006, 72, 7246-7252.	1.4	486
69	Interactions Between Yeasts and Grapevines: Filamentous Growth, Endopolygalacturonase and Phytopathogenicity of Colonizing Yeasts. Microbial Ecology, 2006, 51, 109-116.	1.4	26
70	Chitosan as a potential natural compound to control pre and postharvest diseases of horticultural commodities. Crop Protection, 2006, 25, 108-118.	1.0	576
71	Burkholderia phytofirmans sp. nov., a novel plant-associated bacterium with plant-beneficial properties. International Journal of Systematic and Evolutionary Microbiology, 2005, 55, 1187-1192.	0.8	322
72	Endophytic Colonization of Vitis vinifera L. by Plant Growth-Promoting Bacterium Burkholderia sp. Strain PsJN. Applied and Environmental Microbiology, 2005, 71, 1685-1693.	1.4	718

#	Article	IF	CITATIONS
73	Use of Plant Growth-Promoting Bacteria for Biocontrol of Plant Diseases: Principles, Mechanisms of Action, and Future Prospects. Applied and Environmental Microbiology, 2005, 71, 4951-4959.	1.4	2,025
74	Enhancement of Defence Responses against Bayoud Disease by Treatment of Date Palm Seedlings with an Hypoaggressive Fusarium oxysporum Isolate. Journal of Phytopathology, 2004, 152, 182-189.	0.5	46
75	Chitosan improves development, and protects Vitis vinifera L. against Botrytis cinerea. Plant Cell Reports, 2004, 22, 608-614.	2.8	186
76	Inhibitory effect of endophyte bacteria on Botrytis cinerea and its influence to promote the grapevine growth. Biological Control, 2002, 24, 135-142.	1.4	213
77	Characterisation of the yeastPichia membranifaciensand its possible use in the biological control ofBotrytis cinerea, causing the grey mould disease of grapevine. FEMS Microbiology Letters, 2001, 202, 227-232.	0.7	49
78	Saccharomyces cerevisiae, a potential pathogen towards grapevine, Vitis vinifera. FEMS Microbiology Ecology, 2001, 37, 143-150.	1.3	23
79	Protective enzymes against reactive oxygen species during ripening of tomato (Lycopersicon) Tj ETQq1 1 0.7843	14 rgBT / 1.1	Overlock 10
80	Enhancement of in vitro growth and resistance to gray mould ofVitis viniferaco-cultured with plant growth-promoting rhizobacteria. FEMS Microbiology Letters, 2000, 186, 91-95.	0.7	150
81	Impact of UV-C Irradiation on the Cell Wall-Degrading Enzymes during Ripening of Tomato (Lycopersicon esculentum L.) Fruit. Journal of Agricultural and Food Chemistry, 2000, 48, 667-671.	2.4	140
82	Effects of UV-C irradiation on lipid peroxidation markers during ripening of tomato (Lycopersicon) Tj ETQq0 0 0 r	gBT /Over 1.1	lock 10 Tf 50 14
83	EVect of Chitosan on Growth and Toxin Production by Alternaria alternata f. sp. lycopersici. Biocontrol Science and Technology, 1998, 8, 33-43.	0.5	53
84	Response of champenoise grapevine to low temperatures: Changes of shoot and bud proline concentrations in response to low temperatures and correlations with freezing tolerance. The Journal of Horticultural Science, 1997, 72, 577-582.	0.3	40
85	Effect of Chitosan on Growth and Toxin Production by Alternaria alternata f. sp. lycopersici. Hortscience: A Publication of the American Society for Hortcultural Science, 1997, 32, 467F-468.	0.5	17
86	Lipid Peroxidation Products in Tomato Fruit (Lycopersicon esculentum) during Storage after Exposure to Hormic Doses of UV Light. Hortscience: A Publication of the American Society for Hortcultural Science, 1997, 32, 479A-479.	0.5	0
87	Utilisation de la conductivité spécifique comme critère d'estimation de la viabilité au niveau de l'appareil aérien des vignes champenoises soumises aux températures négatives. Canadian Journal of Botany, 1996, 74, 413-418.	1.2	11
88	Réponse des vignes champenoises aux températures negatives: effet d'un refroidissement contrÃ1é sur les réserves glucidiques du complexe gemmaire avant et au cours du débourrement. Canadian Journal of Botany, 1996, 74, 492-505.	1.2	12
89	Formation et distribution de glace dans les bourgeons de Vitis vinifera avant et au cours de leur débourrement. Canadian Journal of Botany, 1995, 73, 1878-1888.	1.2	6
90	Xâ€ray microtomography: Application to a biological specimen. Bioimaging, 1995, 3, 103-107.	1.8	1

#	Article	IF	CITATIONS
91	Réponse de la vigne (Vitis vinifera L) aux températures inférieures à 0°C. I. Effets d'un refroidissement contrÃ1é sur des sarments aoûtés. Agronomy for Sustainable Development, 1993, 13, 491-498.	0.8	3
92	Réponse de la vigne (Vitis vinifera L) aux températures inférieures à 0°C. II. Effets d'un refroidissement contrÃ1é sur des bourgeons latents avant le débourrement. Agronomy for Sustainable Development, 1993, 13, 499-508.	0.8	3
93	Réponse de la vigne (Vitis vinifera L) aux températures inférieures à 0°C. III. Effets d'un refroidissement contrÃ1é sur des bourgeons au cours du débourrement. Agronomy for Sustainable Development, 1993, 13, 509-514.	0.8	4
94	A review of knowledge on the mechanisms of action of the rare sugar d â€ŧagatose against phytopathogenic oomycetes. Plant Pathology, 0, , .	1.2	5