List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/485525/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	The Phaeodactylum genome reveals the evolutionary history of diatom genomes. Nature, 2008, 456, 239-244.	27.8	1,458
2	Evolution of the diatoms: insights from fossil, biological and molecular data. Phycologia, 2006, 45, 361-402.	1.4	374
3	DIVERSITY IN THE GENUSSKELETONEMA(BACILLARIOPHYCEAE). II. AN ASSESSMENT OF THE TAXONOMY OFS. COSTATUM-LIKE SPECIES WITH THE DESCRIPTION OF FOUR NEW SPECIES. Journal of Phycology, 2005, 41, 151-176.	2.3	336
4	Evolution of the diatoms: V. Morphological and cytological support for the major clades and a taxonomic revision. Phycologia, 2004, 43, 245-270.	1.4	321
5	BOLIDOMONAS: A NEW GENUS WITH TWO SPECIES BELONGING TO A NEW ALGAL CLASS, THE BOLIDOPHYCEAE (HETEROKONTA). Journal of Phycology, 1999, 35, 368-381.	2.3	225
6	Picobiliphytes: A Marine Picoplanktonic Algal Group with Unknown Affinities to Other Eukaryotes. Science, 2007, 315, 253-255.	12.6	202
7	The Application of a Molecular Clock Based on Molecular Sequences and the Fossil Record to Explain Biogeographic Distributions Within the Alexandrium tamarense "Species Complex" (Dinophyceae). Molecular Biology and Evolution, 2003, 20, 1015-1027.	8.9	179
8	MORPHOLOGICAL AND GENETIC VARIATION WITHIN THE DIATOM SKELETONEMA COSTATUM (BACILLARIOPHYTA): EVIDENCE FOR A NEW SPECIES, SKELETONEMA PSEUDOCOSTATUM1. Journal of Phycology, 1991, 27, 514-524.	2.3	146
9	Evolution of the Diatoms (Bacillariophyta). Molecular Phylogenetics and Evolution, 1996, 6, 391-407.	2.7	146
10	Oligonucleotide Probes for the Identification of Three Algal Groups by Dot Blot and Fluorescent Whole-Cell Hybridization. Journal of Eukaryotic Microbiology, 2000, 47, 76-84.	1.7	142
11	Evolution of the diatoms (Bacillariophyta). II. Nuclear-encoded small- subunit rRNA sequence comparisons confirm a paraphyletic origin for the centric diatoms. Molecular Biology and Evolution, 1996, 13, 67-75.	8.9	114
12	Phylogenetic relationships of the â€~golden algae' (haptophytes, heterokont chromophytes) and their plastids. Plant Systematics and Evolution Supplementum = Entwicklungsgeschichte Und Systematik Der Pflanzen Supplementum, 1997, , 187-219.	1.5	114
13	PHYLOGENETIC POSITION OFTOXARIUM, A PENNATE-LIKE LINEAGE WITHIN CENTRIC DIATOMS (BACILLARIOPHYCEAE) 1. Journal of Phycology, 2003, 39, 185-197.	2.3	108
14	Genetic differentiation among three colony-forming species of Phaeocystis: further evidence for the phylogeny of the Prymnesiophyta. Phycologia, 1994, 33, 199-212.	1.4	107
15	Picoeukaryotic Plankton Diversity at the Helgoland Time Series Site as Assessed by Three Molecular Methods. Microbial Ecology, 2006, 52, 53-71.	2.8	107
16	Electrochemical detection of the toxic dinoflagellate Alexandrium ostenfeldii with a DNA-biosensor. Biosensors and Bioelectronics, 2005, 20, 1349-1357.	10.1	96
17	Molecular Detection, Quantification, and Diversity Evaluation of Microalgae. Marine Biotechnology, 2012, 14, 129-142.	2.4	96
18	MOLECULAR PHYLOGENY OF SELECTED MEMBERS OF THE ORDER THALASSIOSIRALES (BACILLARIOPHYTA) AND EVOLUTION OF THE FULTOPORTULA1. Journal of Phycology, 2006, 42, 121-138.	2.3	93

#	Article	IF	CITATIONS
19	Evolution of the diatoms: major steps in their evolution and a review of the supporting molecular and morphological evidence. Phycologia, 2016, 55, 79-103.	1.4	70
20	Molecular Techniques for the Detection of Organisms in Aquatic Environments, with Emphasis on Harmful Algal Bloom Species. Sensors, 2017, 17, 1184.	3.8	70
21	Molecular assessment of phylogenetic relationships in selected species/genera in the naviculoid diatoms (Bacillariophyta). I. The genus Placoneis. Nova Hedwigia, 2007, 85, 331-352.	0.4	66
22	The ALEX CHIP—Development of a DNA chip for identification and monitoring of Alexandrium. Harmful Algae, 2008, 7, 485-494.	4.8	65
23	MORPHOLOGICAL AND MOLECULAR INVESTIGATIONS OF NAVICULOID DIATOMS. II. SELECTED GENERA AND FAMILIES. Diatom Research, 2008, 23, 283-329.	1.2	65
24	Synedropsis gen. nov., a genus of araphid diatoms associated with sea ice. Phycologia, 1994, 33, 248-270.	1.4	63
25	Molecular phylogeny of the family Bacillariaceae based on 18S rDNA sequences: focus on freshwater <i>Nitzschia</i> of the section <i>Lanceolatae</i> . Diatom Research, 2011, 26, 273-291.	1.2	63
26	An assessment of cryptic genetic diversity within theCyclotella meneghinianaspecies complex (Bacillariophyta) based on nuclear and plastid genes, and amplified fragment length polymorphisms. European Journal of Phycology, 2007, 42, 47-60.	2.0	58
27	A validated UPLC–MS/MS method for the surveillance of ten aquatic biotoxins in European brackish and freshwater systems. Harmful Algae, 2016, 55, 31-40.	4.8	53
28	TAXONOMIC STUDIES OF MARINE GOMPHONEMOID DIATOMS. Diatom Research, 1986, 1, 205-225.	1.2	50
29	Colorimetric detection of the toxic dinoflagellate Alexandrium minutum using sandwich hybridization in a microtiter plate assay. Harmful Algae, 2008, 7, 137-145.	4.8	48
30	MOLECULAR EVIDENCE CONFIRMS SISTER RELATIONSHIP OF <i>ARDISSONEA</i> , <i>CLIMACOSPHENIA,</i> AND <i>TOXARIUM</i> WITHIN THE BIPOLAR CENTRIC DIATOMS (BACILLARIOPHYTA, MEDIOPHYCEAE), AND CLADISTIC ANALYSES CONFIRM THAT EXTREMELY ELONGATED SHAPE HAS ARISEN TWICE IN THE DIATOMS ¹ . Journal of Phycology, 2008, 44, 1340-1348.	2.3	44
31	Using fluorescently-labelled rRNA probes for hierarchical estimation of phytoplankton diversity a mini-review. Nova Hedwigia, 2004, 79, 313-320.	0.4	39
32	Automated detection and enumeration for toxic algae by solid-phase cytometry and the introduction of a new probe for Prymnesium parvum (Haptophyta: Prymnesiophyceae). Journal of Plankton Research, 2006, 28, 643-657.	1.8	39
33	DNA microchips for phytoplankton: The fluorescent wave of the future. Nova Hedwigia, 2004, 79, 321-327.	0.4	38
34	Feasibility of Assessing the Community Composition of Prasinophytes at the Helgoland Roads Sampling Site with a DNA Microarray. Applied and Environmental Microbiology, 2008, 74, 5305-5316.	3.1	37
35	Introduction to project MIDTAL: its methods and samples from Arcachon Bay, France. Environmental Science and Pollution Research, 2013, 20, 6690-6704.	5.3	37
36	Detection of Emerging and Re-Emerging Pathogens in Surface Waters Close to an Urban Area. International Journal of Environmental Research and Public Health, 2015, 12, 5505-5527.	2.6	37

#	Article	IF	CITATIONS
37	Electrochemical performance of a DNA-based sensor device for detecting toxic algae. Sensors and Actuators B: Chemical, 2011, 153, 71-77.	7.8	33
38	Molecular tools for monitoring harmful algal blooms. Environmental Science and Pollution Research, 2013, 20, 6683-6685.	5.3	33
39	New Insights into Plagiogrammaceae (Bacillariophyta) Based on Multigene Phylogenies and Morphological Characteristics with the Description of a New Genus and Three New Species. PLoS ONE, 2015, 10, e0139300.	2.5	29
40	MORPHOLOGICAL AND MOLECULAR INVESTIGATIONS OF NAVICULOID DIATOMS. III. <i>HIPPODONTA</i> AND <i>NAVICULA S. S.</i> . Diatom Research, 2008, 23, 331-347.	1.2	28
41	STRUCTURE, LIFE HISTORY AND SYSTEMATICS OF RHOICOSPHENIA (BACILLARIOPHYTA). IV. CORRELATION OF SIZE REDUCTION WITH CHANGES IN VALVE MORPHOLOGY OF RH. GENUFLEXA1. Journal of Phycology, 1984, 20, 101-108.	2.3	26
42	WHY SILICA OR BETTER YET WHY NOT SILICA? SPECULATIONS AS TO WHY THE DIATOMS UTILISE SILICA AS THEIR CELL WALL MATERIAL. Diatom Research, 2002, 17, 453-459.	1.2	25
43	AN INVESTIGATION OF THE CELL WALL COMPONENTS OF <i>ACTINOCYCLUS SUBTILIS</i> (BACILLARIOPHYCEAE) ¹ . Journal of Phycology, 1986, 22, 466-479.	2.3	24
44	Testing a Microarray to Detect and Monitor Toxic Microalgae in Arcachon Bay in France. Microarrays (Basel, Switzerland), 2013, 2, 1-23.	1.4	23
45	Electrochemical RNA genosensors for toxic algal species: enhancing selectivity and sensitivity. Talanta, 2016, 161, 560-566.	5.5	23
46	Molecular probes and microarrays for the detection of toxic algae in the genera Dinophysis and Phalacroma (Dinophyta). Environmental Science and Pollution Research, 2013, 20, 6733-6750.	5.3	21
47	A reappraisal of the diatom genusRhoiconeisand the description ofCampylopyxis, gen. nov British Phycological Journal, 1985, 20, 313-328.	1.2	20
48	A LIGHT AND ELECTRON MICROSCOPIC STUDY OF THE EPIPSAMMIC DIATOM <i>CATENULA ADHAERENS</i> MERESCHKOWSKY. Diatom Research, 1986, 1, 283-290.	1.2	20
49	A Review of the Evolution of the Diatoms from the Origin of the Lineage to Their Populations. Cellular Origin and Life in Extreme Habitats, 2011, , 93-118.	0.3	18
50	Microarray testing for the presence of toxic algae monitoring programme in Galicia (NW Spain). Environmental Science and Pollution Research, 2013, 20, 6778-6793.	5.3	18
51	Evaluation of probe orientation and effect of the digoxigenin-enzymatic label in a sandwich hybridization format to develop toxic algae biosensors. Harmful Algae, 2011, 10, 489-494.	4.8	17
52	Review: advances in electrochemical genosensors-based methods for monitoring blooms of toxic algae. Environmental Science and Pollution Research, 2013, 20, 6838-6850.	5.3	17
53	<scp>phylochipanalyser</scp> — a program for analysing hierarchical probe sets. Molecular Ecology Resources, 2008, 8, 99-102.	4.8	16
54	Genomics and Genetics ofÂDiatoms. Advances in Botanical Research, 2012, 64, 245-284.	1.1	15

#	Article	IF	CITATIONS
55	The Permian–Triassic mass extinction forces the radiation of the modern marine phytoplankton. Phycologia, 2011, 50, 684-693.	1.4	14
56	Microarray (phylochip) analysis of freshwater pathogens at several sites along the Northern German coast transecting both estuarine and freshwaters. Applied Microbiology and Biotechnology, 2017, 101, 871-886.	3.6	13
57	Pursuit of a natural classification of diatoms: An incorrect comparison of published data. European Journal of Phycology, 2010, 45, 155-166.	2.0	12
58	Successional Sequences of Microbial Colonization on Three Species of Rhodophycean Macroalgae. Annals of Botany, 1985, 56, 399-413.	2.9	11
59	EVIDENCE FOR PARALLEL EVOLUTION OF FRUSTULE SHAPE IN TWO LINES OF PENNATE DIATOMS FROM THE EPIPHYTON. Diatom Research, 1991, 6, 109-124.	1.2	11
60	Opinion: Can coalescent models explain deep divergences in the diatoms and argue for the acceptance of paraphyletic taxa at all taxonomic hierarchies?. Nova Hedwigia, 2016, 102, 107-128.	0.4	11
61	Validation of the detection of Pseudo-nitzschia spp. using specific RNA probes tested in a microarray format: Calibration of signal based on variability of RNA content with environmental conditions. Harmful Algae, 2014, 37, 183-193.	4.8	10
62	Validation of the detection of Alexandrium species using specific RNA probes tested in a microarray format: Calibration of signal using variability of RNA content with environmental conditions. Harmful Algae, 2014, 37, 17-27.	4.8	10
63	Mini review: Diatom species as seen through a molecular window. Revista Brasileira De Botanica, 2018, 41, 457-469.	1.3	9
64	An assessment of RNA content in <i>Prymnesium parvum</i> , <i>Prymnesium polylepis,</i> cf. <i>Chattonella</i> sp. and <i>Karlodinium veneficum</i> under varying environmental conditions for calibrating an RNA microarray for species detection. FEMS Microbiology Ecology, 2014, 88, 140-159	2.7	8
65	Evolution of the Diatoms: VIII. Re-Examination of the SSU-Rrna Gene Using Multiple Outgroups and a Cladistic Analysis of Valve Features. Journal of Biodiversity Bioprospecting and Development, 2014, 01, .	0.4	8
66	COMPARISON OF RESTRICTION ENDONUCLEASE SITES IN THE SMALL SUBUNIT 16S-like rRNA GENE FROM THE MAJOR GENERA OF THE FAMILY BACILLARIACEAE. Diatom Research, 1990, 5, 63-71.	1.2	6
67	CONTINUED IDEAS ON THE EVOLUTION OF SILICA METABOLISM. Diatom Research, 2007, 22, 217-226.	1.2	6
68	Note: steps taken to optimise probe specificity and signal intensity prior to field validation of the MIDTAL (Microarray for the Detection of Toxic Algae). Environmental Science and Pollution Research, 2013, 20, 6686-6689.	5.3	6
69	Phylogenetic reconstruction of diatoms using a seven-gene dataset, multiple outgroups, and morphological data for a total evidence approach. Phycologia, 2020, 59, 422-436.	1.4	6
70	Refining cryptophyte identification: matching cell fixation methods to FISH hybridisation of cryptomonads. Journal of Applied Phycology, 2010, 22, 725-731.	2.8	5
71	Evolution of the diatoms: IX. Two datasets resolving monophyletic Classes of diatoms are used to explore the validity of adding short clone library sequences to the analysis. European Journal of Phycology, 2017, 52, 90-103.	2.0	5
72	Molecular detection of harmful cyanobacteria and expression of their toxin genes in Dutch lakes using multi-probe RNA chips. Harmful Algae, 2018, 72, 25-35.	4.8	5

#	Article	IF	CITATIONS
73	Application of the μAqua microarray for pathogenic organisms across a marine/freshwater interface. Harmful Algae, 2020, 92, 101703.	4.8	5
74	Application of microarrays (phylochips) for analysis of community diversity by species identification. Perspectives in Phycology, 2016, 3, 93-106.	1.9	5
75	Seasonal dynamics of freshwater pathogens as measured by microarray at Lake Sapanca, a drinking water source in the north-eastern part of Turkey. Environmental Monitoring and Assessment, 2018, 190, 42.	2.7	4
76	Multivariate analyses document host specificity, differences in the diatom metaphyton vs. epiphyton, and seasonality that structure the epiphytic diatom community. Estuarine, Coastal and Shelf Science, 2018, 213, 314-330.	2.1	4
77	Correctly assigning original discoveries to original authors. Molecular Phylogenetics and Evolution, 2009, 50, 407-408.	2.7	3
78	Determination of the efficiency of filtration of cultures from microalgae and bacteria using hollow fiber filters. Environmental Science: Water Research and Technology, 0, , .	2.4	0