Susanne Neumann

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4855097/publications.pdf

Version: 2024-02-01

42 papers

1,325 citations

³⁹⁴⁴²¹
19
h-index

35 g-index

42 all docs 42 docs citations

times ranked

42

737 citing authors

#	Article	IF	CITATIONS
1	TSH/IGF-1 Receptor Cross Talk in Graves' Ophthalmopathy Pathogenesis. Journal of Clinical Endocrinology and Metabolism, 2016, 101, 2340-2347.	3.6	104
2	Small-molecule agonists for the thyrotropin receptor stimulate thyroid function in human thyrocytes and mice. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 12471-12476.	7.1	102
3	Bidirectional TSH and IGF-1 Receptor Cross Talk Mediates Stimulation of Hyaluronan Secretion by Graves' Disease Immunoglobins. Journal of Clinical Endocrinology and Metabolism, 2015, 100, 1071-1077.	3.6	91
4	A Low-Molecular-Weight Antagonist for the Human Thyrotropin Receptor with Therapeutic Potential for Hyperthyroidism. Endocrinology, 2008, 149, 5945-5950.	2.8	90
5	A New Small-Molecule Antagonist Inhibits Graves' Disease Antibody Activation of the TSH Receptor. Journal of Clinical Endocrinology and Metabolism, 2011, 96, 548-554.	3.6	90
6	A Selective TSH Receptor Antagonist Inhibits Stimulation of Thyroid Function in Female Mice. Endocrinology, 2014, 155, 310-314.	2.8	88
7	A Drug-Like Antagonist Inhibits Thyrotropin Receptor–Mediated Stimulation of cAMP Production in Graves' Orbital Fibroblasts. Thyroid, 2012, 22, 839-843.	4.5	61
8	Occupancy of both sites on the thyrotropin (TSH) receptor dimer is necessary for phosphoinositide signaling. FASEB Journal, 2011, 25, 3687-3694.	0.5	55
9	βâ€Arrestinâ€1 mediates thyrotropinâ€enhanced osteoblast differentiation. FASEB Journal, 2014, 28, 3446-3455.	. O.5	55
10	A Small Molecule Inverse Agonist for the Human Thyroid-Stimulating Hormone Receptor. Endocrinology, 2010, 151, 3454-3459.	2.8	54
11	Thyrotropin and Insulin-Like Growth Factor 1 Receptor Crosstalk Upregulates Sodium–Iodide Symporter Expression in Primary Cultures of Human Thyrocytes. Thyroid, 2016, 26, 1794-1803.	4.5	43
12	Arrestin- \hat{l}^2 -1 Physically Scaffolds TSH and IGF1 Receptors to Enable Crosstalk. Endocrinology, 2019, 160, 1468-1479.	2.8	38
13	TSH/IGF1 receptor crosstalk: Mechanism and clinical implications. , 2020, 209, 107502.		35
14	Low Affinity Analogs of Thyrotropin-releasing Hormone Are Super-agonists. Journal of Biological Chemistry, 2006, 281, 13103-13109.	3.4	34
15	TSHR/IGF-1R Cross-Talk, Not IGF-1R Stimulating Antibodies, Mediates Graves' Ophthalmopathy Pathogenesis. Thyroid, 2017, 27, 746-747.	4.5	29
16	De novo triiodothyronine formation from thyrocytes activated by thyroid-stimulating hormone. Journal of Biological Chemistry, 2017, 292, 15434-15444.	3.4	27
17	Inhibiting thyrotropin/insulin-like growth factor 1 receptor crosstalk to treat Graves' ophthalmopathy: studies in orbital fibroblasts <i>in vitro</i> . British Journal of Pharmacology, 2017, 174, 328-340.	5.4	26
18	Evidence That Graves' Ophthalmopathy Immunoglobulins Do Not Directly Activate IGF-1 Receptors. Thyroid, 2018, 28, 650-655.	4.5	26

#	Article	IF	CITATIONS
19	Persistent cAMP signaling by thyrotropin (TSH) receptors is not dependent on internalization. FASEB Journal, 2010, 24, 3992-3999.	0.5	25
20	Human TSH receptor ligands as pharmacological probes with potential clinical application. Expert Review of Endocrinology and Metabolism, 2009, 4, 669-679.	2.4	19
21	An Enantiomer of an Oral Small-Molecule TSH Receptor Agonist Exhibits Improved Pharmacologic Properties. Frontiers in Endocrinology, 2016, 7, 105.	3.5	18
22	Thyrotropin Stimulates Differentiation Not Proliferation of Normal Human Thyrocytes in Culture. Frontiers in Endocrinology, 2016, 7, 168.	3.5	17
23	Targeting TSH and IGF-1 Receptors to Treat Thyroid Eye Disease. European Thyroid Journal, 2020, 9, 59-65.	2.4	17
24	Constitutively Active Thyrotropin and Thyrotropin-Releasing Hormone Receptors and Their Inverse Agonists. Methods in Enzymology, 2010, 485, 147-160.	1.0	16
25	A High Throughput Screening Assay System for the Identification of Small Molecule Inhibitors of gsp. PLoS ONE, 2014, 9, e90766.	2.5	16
26	Multiple Transduction Pathways Mediate Thyrotropin Receptor Signaling in Preosteoblast-Like Cells. Endocrinology, 2016, 157, 2173-2181.	2.8	15
27	Thyroid stimulating hormone (TSH)/insulin-like growth factor 1 (IGF1) receptor cross-talk in Human cells. Current Opinion in Endocrine and Metabolic Research, 2018, 2, 29-33.	1.4	15
28	The intramolecular agonist is obligate for activation of glycoprotein hormone receptors. FASEB Journal, 2020, 34, 11243-11256.	0.5	15
29	Discovery of a Positive Allosteric Modulator of the Thyrotropin Receptor: Potentiation of Thyrotropin-Mediated Preosteoblast Differentiation In Vitro. Journal of Pharmacology and Experimental Therapeutics, 2018, 364, 38-45.	2.5	14
30	Thyrotropin, but Not Thyroid-Stimulating Antibodies, Induces Biphasic Regulation of Gene Expression in Human Thyrocytes. Thyroid, 2020, 30, 270-276.	4.5	12
31	Thyrotropin regulation of differentiated gene transcription in adult human thyrocytes in primary culture. Molecular and Cellular Endocrinology, 2020, 518, 111032.	3.2	12
32	TSH Receptor Homodimerization in Regulation of cAMP Production in Human Thyrocytes in vitro. Frontiers in Endocrinology, 2020, 11 , 276 .	3.5	12
33	Thyrotropin Causes Dose-dependent Biphasic Regulation of cAMP Production Mediated by G _s and G _{i/o} Proteins. Molecular Pharmacology, 2020, 97, 2-8.	2.3	10
34	Is There Evidence for IGF1R-Stimulating Abs in Graves' Orbitopathy Pathogenesis?. International Journal of Molecular Sciences, 2020, 21, 6561.	4.1	10
35	Inhibition of TSH/IGF-1 receptor crosstalk by Teprotumumab as a treatment modality of Thyroid Eye Disease. Journal of Clinical Endocrinology and Metabolism, 2021, , .	3.6	9
36	Normal Human Thyrocytes in Culture. Methods in Molecular Biology, 2018, 1817, 1-7.	0.9	8

3

#	Article	IF	CITATION
37	\hat{l}^2 -Arrestin 1 in Thyrotropin Receptor Signaling in Bone: Studies in Osteoblast-Like Cells. Frontiers in Endocrinology, 2020, 11, 312.	3.5	7
38	Rebuttal to Smith and Janssen (Thyroid 2017;27:746–747. DOI: 10.1089/thy.2017.0281). Thyroid, 2017, 27, 1459-1460.	4.5	4
39	TSH Elicits Cell-Autonomous, Biphasic Responses: A Mechanism Inhibiting Hyperstimulation. Endocrinology, 2020, 161, .	2.8	2
40	Graves' Autoantibodies Exhibit Different Stimulating Activities in Cultures of Thyrocytes and Orbital Fibroblasts Not Reflected by Clinical Assays. Thyroid, 2021, , .	4.5	2
41	Letter to the Editor: "Elevated Serum Tetrac in Graves Disease: Potential Pathogenic Role in Thyroid-Associated Ophthalmopathy― Journal of Clinical Endocrinology and Metabolism, 2019, 104, 1075-1076.	3.6	1
42	TSH stimulation of human thyroglobulin and thyroid peroxidase gene transcription is partially dependent on internalization. Cellular Signalling, 2022, 90, 110212.	3.6	1