M Jordan Rowley

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4854490/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Ecdysoneless Protein Regulates Viral and Cellular mRNA Splicing to Promote Cervical Oncogenesis. Molecular Cancer Research, 2022, 20, 305-318.	3.4	6
2	Implications of Dosage Deficiencies in CTCF and Cohesin on Genome Organization, Gene Expression, and Human Neurodevelopment. Genes, 2022, 13, 583.	2.4	10
3	Somatic Diversification of Rearranged Antibody Gene Segments by Intra- and Interchromosomal Templated Mutagenesis. Journal of Immunology, 2022, , ji2100434.	0.8	0
4	Elevating SOX2 Downregulates MYC through a SOX2:MYC Signaling Axis and Induces a Slowly Cycling Proliferative State in Human Tumor Cells. Cancers, 2022, 14, 1946.	3.7	4
5	Sex-specific multi-level 3D genome dynamics in the mouse brain. Nature Communications, 2022, 13, .	12.8	15
6	The inhibition of LSD1 via sequestration contributes to tau-mediated neurodegeneration. Proceedings of the United States of America, 2020, 117, 29133-29143.	7.1	24
7	Evolutionary History and Activity of RNase H1-Like Proteins in <i>Arabidopsis thaliana</i> . Plant and Cell Physiology, 2020, 61, 1107-1119.	3.1	12
8	Analysis of Hi-C data using SIP effectively identifies loops in organisms from <i>C. elegans</i> to mammals. Genome Research, 2020, 30, 447-458.	5.5	70
9	Ecdysone-Induced 3D Chromatin Reorganization Involves Active Enhancers Bound by Pipsqueak and Polycomb. Cell Reports, 2019, 28, 2715-2727.e5.	6.4	32
10	Immediate and deferred epigenomic signatures of in vivo neuronal activation in mouse hippocampus. Nature Neuroscience, 2019, 22, 1718-1730.	14.8	114
11	Maintenance of CTCF- and Transcription Factor-Mediated Interactions from the Gametes to the Early Mouse Embryo. Molecular Cell, 2019, 75, 154-171.e5.	9.7	81
12	Condensin II Counteracts Cohesin and RNA Polymerase II in the Establishment of 3D Chromatin Organization. Cell Reports, 2019, 26, 2890-2903.e3.	6.4	97
13	Widespread long-range cis-regulatory elements in the maize genome. Nature Plants, 2019, 5, 1237-1249.	9.3	250
14	Analysis of Chromatin Interactions Mediated by Specific Architectural Proteins in Drosophila Cells. Methods in Molecular Biology, 2018, 1766, 239-256.	0.9	1
15	Organizational principles of 3D genome architecture. Nature Reviews Genetics, 2018, 19, 789-800.	16.3	832
16	Architectural Proteins and Pluripotency Factors Cooperate to Orchestrate the Transcriptional Response of hESCs to Temperature Stress. Molecular Cell, 2018, 71, 940-955.e7.	9.7	62
17	Epigenetic regulation of Plasmodium falciparum clonally variant gene expression during development in Anopheles gambiae. Scientific Reports, 2017, 7, 40655.	3.3	69
18	DifferentÂenhancer classes in Drosophila bind distinct architectural proteins and mediate unique chromatin interactions and 3D architecture. Nucleic Acids Research, 2017, 45, 1714-1730.	14.5	133

M JORDAN ROWLEY

#	Article	IF	CITATIONS
19	Evolutionarily Conserved Principles Predict 3D Chromatin Organization. Molecular Cell, 2017, 67, 837-852.e7.	9.7	458
20	Long-range control of gene expression via RNA-directed DNA methylation. PLoS Genetics, 2017, 13, e1006749.	3.5	33
21	Capturing native interactions: intrinsicÂmethods to study chromatinÂconformation. Molecular Systems Biology, 2016, 12, 897.	7.2	4
22	Minute-Made Data Analysis: Tools for Rapid Interrogation of Hi-C Contacts. Molecular Cell, 2016, 64, 9-11.	9.7	4
23	A Dicer-Independent Route for Biogenesis of siRNAs that Direct DNA Methylation in Arabidopsis. Molecular Cell, 2016, 61, 222-235.	9.7	134
24	The three-dimensional genome: principles and roles of long-distance interactions. Current Opinion in Cell Biology, 2016, 40, 8-14.	5.4	113
25	Long non-coding RNA produced by RNA polymerase V determines boundaries of heterochromatin. ELife, 2016, 5, .	6.0	76
26	<scp>RNA</scp> â€directed <scp>DNA</scp> methylation requires stepwise binding of silencing factors to long nonâ€coding <scp>RNA</scp> . Plant Journal, 2014, 79, 181-191.	5.7	83
27	Analysis of long non-coding RNAs produced by a specialized RNA polymerase in Arabidopsis thaliana. Methods, 2013, 63, 160-169.	3.8	31
28	A SWI/SNF Chromatin-Remodeling Complex Acts in Noncoding RNA-Mediated Transcriptional Silencing. Molecular Cell, 2013, 49, 298-309.	9.7	178
29	<scp>RNA</scp> polymerase <scp>V</scp> targets transcriptional silencing components to promoters of proteinâ€coding genes. Plant Journal, 2013, 73, 179-189.	5.7	61
30	Spatial and functional relationships among Pol V-associated loci, Pol IV-dependent siRNAs, and cytosine methylation in the <i>Arabidopsis</i> epigenome. Genes and Development, 2012, 26, 1825-1836.	5.9	137
31	Independent Chromatin Binding of ARGONAUTE4 and SPT5L/KTF1 Mediates Transcriptional Gene Silencing. PLoS Genetics, 2011, 7, e1002120.	3.5	62