Norihiko Sugimoto

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4854376/publications.pdf

Version: 2024-02-01

567281 580821 39 647 15 25 citations g-index h-index papers 40 40 40 368 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Kelvin Wave and Its Impact on the Venus Atmosphere Tested by Observing System Simulation Experiment. Atmosphere, 2022, 13, 182.	2.3	2
2	Dynamical Effect on Static Stability of the Venus Atmosphere Simulated Using a General Circulation Model: A Comparison With Radio Occultation Measurements. Journal of Geophysical Research E: Planets, 2022, 127, .	3.6	2
3	A GCM Study on the 4â€Day and 5â€Day Waves in the Venus Atmosphere. Journal of Geophysical Research E: Planets, 2022, 127, .	3.6	11
4	A Sensitivity Study of the Thermal Tides in the Venusian Atmosphere: Structures and Dynamical Effects on the Superrotation. Journal of Geophysical Research E: Planets, 2022, 127, .	3.6	4
5	Quasiâ€Periodic Variation of the Lower Equatorial Cloud Induced by Atmospheric Waves on Venus. Journal of Geophysical Research E: Planets, 2021, 126, e2020JE006781.	3.6	3
6	Generation of gravity waves from thermal tides in the Venus atmosphere. Nature Communications, 2021, 12, 3682.	12.8	9
7	Observing System Simulation Experiment to Reproduce Kelvin Wave in the Venus Atmosphere. Atmosphere, 2021, 12, 14.	2.3	4
8	Venusian Cloud Distribution Simulated by a General Circulation Model. Journal of Geophysical Research E: Planets, 2020, 125, e2019JE006208.	3.6	10
9	Thermal structure of the Venusian atmosphere from the sub-cloud region to the mesosphere as observed by radio occultation. Scientific Reports, 2020, 10, 3448.	3.3	36
10	Impact of Data Assimilation on Thermal Tides in the Case of Venus Express Wind Observation. Geophysical Research Letters, 2019, 46, 4573-4580.	4.0	11
11	Fully Developed Superrotation Driven by the Mean Meridional Circulation in a Venus GCM. Geophysical Research Letters, 2019, 46, 1776-1784.	4.0	24
12	Planetary-scale streak structure reproduced in high-resolution simulations of the Venus atmosphere with a low-stability layer. Nature Communications, 2019, 10, 23.	12.8	35
13	Observing system simulation experiment for radio occultation measurements of the Venus atmosphere among small satellites. Journal of Japan Society of Civil Engineers Ser A2 (Applied) Tj ETQq1 1 0.7843	31 4.1 gBT/	Overlock 10 T
14	Local Time Dependence of the Thermal Structure in the Venusian Equatorial Upper Atmosphere: Comparison of Akatsuki Radio Occultation Measurements and GCM Results. Journal of Geophysical Research E: Planets, 2018, 123, 2270-2280.	3.6	28
15	Threeâ€Dimensional Structures of Thermal Tides Simulated by a Venus GCM. Journal of Geophysical Research E: Planets, 2018, 123, 335-352.	3.6	42
16	A Dynamical Mechanism for Secondary Eyewall Formation in Tropical Cyclones. Journals of the Atmospheric Sciences, 2018, 75, 3965-3986.	1.7	3
17	Inertia–gravity wave radiation from the elliptical vortex in the <i>f</i> -plane shallow water system. Fluid Dynamics Research, 2017, 49, 025508.	1.3	2
18	Development of an ensemble Kalman filter data assimilation system for the Venusian atmosphere. Scientific Reports, 2017, 7, 9321.	3.3	16

#	Article	IF	CITATIONS
19	Vertical structure of the axiâ€asymmetric temperature disturbance in the Venusian polar atmosphere: Comparison between radio occultation measurements and GCM results. Journal of Geophysical Research E: Planets, 2017, 122, 1687-1703.	3.6	16
20	Nonlinear Interaction Between Vortex and Wave in Rotating Shallow Water., 2017,,.		0
21	Wave analysis in the atmosphere of Venus below 100-km altitude, simulated by the LMD Venus GCM. Icarus, 2016, 278, 38-51.	2.5	84
22	Generation and backreaction of spontaneously emitted inertiaâ€gravity waves. Geophysical Research Letters, 2016, 43, 3519-3525.	4.0	11
23	The puzzling Venusian polar atmospheric structure reproduced by a general circulation model. Nature Communications, 2016, 7, 10398.	12.8	37
24	Inertia-gravity wave radiation from the merging of two co-rotating vortices in the f-plane shallow water system. Physics of Fluids, 2015, 27, 121701.	4.0	2
25	A Theoretical Study on the Spontaneous Radiation of Inertia–Gravity Waves Using the Renormalization Group Method. Part I: Derivation of the Renormalization Group Equations. Journals of the Atmospheric Sciences, 2015, 72, 957-983.	1.7	26
26	A Theoretical Study on the Spontaneous Radiation of Inertia–Gravity Waves Using the Renormalization Group Method. Part II: Verification of the Theoretical Equations by Numerical Simulation. Journals of the Atmospheric Sciences, 2015, 72, 984-1009.	1.7	17
27	Cyclone–anticyclone asymmetry in gravity wave radiation from a co-rotating vortex pair in rotating shallow water. Journal of Fluid Mechanics, 2015, 772, 80-106.	3.4	12
28	Baroclinic instability in the Venus atmosphere simulated by GCM. Journal of Geophysical Research E: Planets, 2014, 119, 1950-1968.	3.6	43
29	Inverse insolation dependence of Venus' cloud-level convection. Icarus, 2014, 228, 181-188.	2.5	47
30	Waves in a Venus general circulation model. Geophysical Research Letters, 2014, 41, 7461-7467.	4.0	52
31	Spontaneous Gravity Wave Radiation in a Shallow Water System on a Rotating Sphere. Journal of the Meteorological Society of Japan, 2012, 90, 101-125.	1.8	8
32	Numerical Modeling for Venus Atmosphere Based on AFES (Atmospheric GCM for the Earth Simulator). Communications in Computer and Information Science, 2012, , 70-78.	0.5	1
33	Visualization of Huge Climate Data with High-Speed Spherical Self-Organizing Map. Journal of Advanced Computational Intelligence and Intelligent Informatics, 2009, 13, 210-216.	0.9	1
34	A Fast Non-Empirical Tropical Cyclone Identification Method., 2009,, 251-263.		0
35	Parameter Sweep Experiments on Spontaneous Gravity Wave Radiation from Unsteady Rotational Flow in an f-Plane Shallow Water System. Journals of the Atmospheric Sciences, 2008, 65, 235-249.	1.7	18
36	A First Attempt to Apply High Speed Spherical Self-organizing Map to Huge Climate Datasets. Scientific Online Letters on the Atmosphere, 2008, 4, 41-44.	1.4	6

#	Article	IF	CITATIONS
37	Balance regimes for the stability of a jet in anf-plane shallow water system. Fluid Dynamics Research, 2007, 39, 353-377.	1.3	9
38	Gravity wave radiation from unsteady rotational flow in an $\langle i \rangle f \langle i \rangle$ -plane shallow water system. Fluid Dynamics Research, 2007, 39, 731-754.	1.3	10
39	Source Models of Gravity Waves in an F-plane Shallow Water System. , 2007, , 221-225.		1