Marco Marzioni

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/485416/publications.pdf Version: 2024-02-01

#	Article	lF	CITATIONS
1	Cholangiocarcinoma 2020: the next horizon in mechanisms and management. Nature Reviews Gastroenterology and Hepatology, 2020, 17, 557-588.	17.8	1,155
2	Cholangiocarcinoma: current knowledge and future perspectives consensus statement from the European Network for the Study of Cholangiocarcinoma (ENS-CCA). Nature Reviews Gastroenterology and Hepatology, 2016, 13, 261-280.	17.8	964
3	EASL Clinical Practice Guidelines: The diagnosis and management of patients with primary biliary cholangitis. Journal of Hepatology, 2017, 67, 145-172.	3.7	889
4	Genome-wide meta-analyses identify three loci associated with primary biliary cirrhosis. Nature Genetics, 2010, 42, 658-660.	21.4	389
5	Patient Age, Sex, and Inflammatory Bowel Disease Phenotype Associate With Course of Primary Sclerosing Cholangitis. Gastroenterology, 2017, 152, 1975-1984.e8.	1.3	355
6	Long-term albumin administration in decompensated cirrhosis (ANSWER): an open-label randomised trial. Lancet, The, 2018, 391, 2417-2429.	13.7	345
7	Wnt–β-catenin signalling in liver development, health and disease. Nature Reviews Gastroenterology and Hepatology, 2019, 16, 121-136.	17.8	341
8	Proliferating Cholangiocytes: A Neuroendocrine Compartment in the Diseased Liver. Gastroenterology, 2007, 132, 415-431.	1.3	264
9	Dysbiosis contributes to fibrogenesis in the course of chronic liver injury in mice. Hepatology, 2014, 59, 1738-1749.	7.3	258
10	Ductular Reaction in Liver Diseases: Pathological Mechanisms and Translational Significances. Hepatology, 2019, 69, 420-430.	7.3	251
11	A Model of Insulin Resistance and Nonalcoholic Steatohepatitis in Rats. American Journal of Pathology, 2006, 169, 846-860.	3.8	237
12	Autocrine/paracrine regulation of the growth of the biliary tree by the neuroendocrine hormone serotonin. Gastroenterology, 2005, 128, 121-137.	1.3	226
13	Serum extracellular vesicles contain protein biomarkers for primary sclerosing cholangitis and cholangiocarcinoma. Hepatology, 2017, 66, 1125-1143.	7.3	218
14	Vascular Endothelial Growth Factor Stimulates Rat Cholangiocyte Proliferation Via an Autocrine Mechanism. Gastroenterology, 2006, 130, 1270-1282.	1.3	188
15	Role of endoscopy in primary sclerosing cholangitis: European Society of Gastrointestinal Endoscopy (ESGE) and European Association for the Study of the Liver (EASL) Clinical Guideline. Endoscopy, 2017, 49, 588-608.	1.8	154
16	Immunochip analyses identify a novel risk locus for primary biliary cirrhosis at 13q14, multiple independent associations at four established risk loci and epistasis between 1p31 and 7q32 risk variants. Human Molecular Genetics, 2012, 21, 5209-5221.	2.9	139
17	Small mouse cholangiocytes proliferate in response to H1 histamine receptor stimulation by activation of the IP ₃ /CaMK I/CREB pathway. American Journal of Physiology - Cell Physiology, 2008, 295, C499-C513.	4.6	125
18	Ursodeoxycholate and tauroursodeoxycholate inhibit cholangiocyte growth and secretion of BDL rats through activation of PKC alpha. Hepatology, 2002, 35, 1041-1052.	7.3	122

#	Article	IF	CITATIONS
19	Effect of pirfenidone on rat hepatic stellate cell proliferation and collagen production. Journal of Hepatology, 2002, 37, 584-591.	3.7	120
20	Human leukocyte antigen polymorphisms in italian primary biliary cirrhosis: A multicenter study of 664 patients and 1992 healthy controls. Hepatology, 2008, 48, 1906-1912.	7.3	120
21	Cholangiocarcinoma landscape in Europe: Diagnostic, prognostic and therapeutic insights from the ENSCCA Registry. Journal of Hepatology, 2022, 76, 1109-1121.	3.7	119
22	Bile acid feeding increased proliferative activity and apical bile acid transporter expression in both small and large rat cholangiocytes. Hepatology, 2001, 34, 868-876.	7.3	110
23	cAMP stimulates the secretory and proliferative capacity of the rat intrahepatic biliary epithelium through changes in the PKA/Src/MEK/ERK1/2 pathway. Journal of Hepatology, 2004, 41, 528-537.	3.7	110
24	Italian consensus guidelines for the diagnostic work-up and follow-up of cystic pancreatic neoplasms. Digestive and Liver Disease, 2014, 46, 479-493.	0.9	108
25	Pretreatment prediction of response to ursodeoxycholic acid in primary biliary cholangitis: development and validation of the UDCA Response Score. The Lancet Gastroenterology and Hepatology, 2018, 3, 626-634.	8.1	103
26	Functional Heterogeneity of Cholangiocytes. Seminars in Liver Disease, 2002, 22, 227-240.	3.6	99
27	Hepatic fibrogenesis in response to chronic liver injury: novel insights on the role of cellâ€ŧoâ€cell interaction and transition. Liver International, 2008, 28, 1052-1064.	3.9	99
28	Serotonin Metabolism Is Dysregulated in Cholangiocarcinoma, which Has Implications for Tumor Growth. Cancer Research, 2008, 68, 9184-9193.	0.9	90
29	Liver carcinogenesis: Rodent models of hepatocarcinoma and cholangiocarcinoma. Digestive and Liver Disease, 2013, 45, 450-459.	0.9	87
30	Role of endoscopy in primary sclerosing cholangitis: European Society of Gastrointestinal Endoscopy (ESGE) and European Association for the Study of the Liver (EASL) Clinical Guideline. Journal of Hepatology, 2017, 66, 1265-1281.	3.7	87
31	γ-Aminobutyric Acid Inhibits Cholangiocarcinoma Growth by Cyclic AMP–Dependent Regulation of the Protein Kinase A/Extracellular Signal-Regulated Kinase 1/2 Pathway. Cancer Research, 2005, 65, 11437-11446.	0.9	85
32	Secretin Stimulates Biliary Cell Proliferation by Regulating Expression of MicroRNA 125b and MicroRNA let7a in Mice. Gastroenterology, 2014, 146, 1795-1808.e12.	1.3	83
33	SOX17 regulates cholangiocyte differentiation and acts as a tumor suppressor in cholangiocarcinoma. Journal of Hepatology, 2017, 67, 72-83.	3.7	81
34	Polycystic liver diseases: advanced insights into the molecular mechanisms. Nature Reviews Gastroenterology and Hepatology, 2014, 11, 750-761.	17.8	80
35	Functional and Structural Features of Cholangiocytes in Health and Disease. Cellular and Molecular Gastroenterology and Hepatology, 2015, 1, 368-380.	4.5	80
36	The secretin/secretin receptor axis modulates liver fibrosis through changes in transforming growth factorâ€Î²1 biliary secretion in mice. Hepatology, 2016, 64, 865-879.	7.3	79

#	Article	IF	CITATIONS
37	H3 histamine receptor agonist inhibits biliary growth of BDL rats by downregulation of the cAMP-dependent PKA/ERK1/2/ELK-1 pathway. Laboratory Investigation, 2007, 87, 473-487.	3.7	77
38	Leptin Enhances Cholangiocarcinoma Cell Growth. Cancer Research, 2008, 68, 6752-6761.	0.9	77
39	HCC Development Is Associated to Peripheral Insulin Resistance in a Mouse Model of NASH. PLoS ONE, 2014, 9, e97136.	2.5	76
40	Classical HLA-DRB1 and DPB1 alleles account for HLA associations with primary biliary cirrhosis. Genes and Immunity, 2012, 13, 461-468.	4.1	75
41	Heterogeneity of the intrahepatic biliary epithelium. World Journal of Gastroenterology, 2006, 12, 3523.	3.3	75
42	Bile acid depletion and repletion regulate cholangiocyte growth and secretion by a phosphatidylinositol 3-kinase–dependent pathway in rats. Gastroenterology, 2002, 123, 1226-1237.	1.3	74
43	Glucagon-Like Peptide-1 and Its Receptor Agonist Exendin-4 Modulate Cholangiocyte Adaptive Response to Cholestasis. Gastroenterology, 2007, 133, 244-255.	1.3	73
44	The anti-fibrotic effect of pirfenidone in rat liver fibrosis is mediated by downregulation of procollagen $\hat{1}\pm1(I)$, TIMP-1 and MMP-2. Digestive and Liver Disease, 2004, 36, 744-751.	0.9	72
45	MicroRNAâ€506 promotes primary biliary cholangitis–like features in cholangiocytes and immune activation. Hepatology, 2018, 67, 1420-1440.	7.3	72
46	Ca2+-Dependent Cytoprotective Effects of Ursodeoxycholic and Tauroursodeoxycholic Acid on the Biliary Epithelium in a Rat Model of Cholestasis and Loss of Bile Ducts. American Journal of Pathology, 2006, 168, 398-409.	3.8	68
47	Administration of r-VEGF-A prevents hepatic artery ligation-induced bile duct damage in bile duct ligated rats. American Journal of Physiology - Renal Physiology, 2006, 291, G307-G317.	3.4	67
48	Role of inflammation and proinflammatory cytokines in cholangiocyte pathophysiology. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2018, 1864, 1270-1278.	3.8	67
49	Recent advances in the morphological and functional heterogeneity of the biliary epithelium. Experimental Biology and Medicine, 2013, 238, 549-565.	2.4	64
50	Patients with Cholangiocarcinoma Present Specific RNA Profiles in Serum and Urine Extracellular Vesicles Mirroring the Tumor Expression: Novel Liquid Biopsy Biomarkers for Disease Diagnosis. Cells, 2020, 9, 721.	4.1	63
51	An international genome-wide meta-analysis of primary biliary cholangitis: Novel risk loci and candidate drugs. Journal of Hepatology, 2021, 75, 572-581.	3.7	62
52	α-1 adrenergic receptor agonists modulate ductal secretion of BDL rats via Ca2+- and PKC-dependent stimulation of cAMP. Hepatology, 2004, 40, 1116-1127.	7.3	61
53	Prevalence and clinical outcome of hepatic haemangioma with specific reference to the risk of rupture: A large retrospective cross-sectional study. Digestive and Liver Disease, 2016, 48, 309-314.	0.9	61
54	Dopaminergic inhibition of secretin-stimulated choleresis by increased PKC-Î ³ expression and decrease of PKA activity. American Journal of Physiology - Renal Physiology, 2003, 284, G683-G694.	3.4	59

#	Article	IF	CITATIONS
55	Cholangiocarcinoma in Italy: A national survey on clinical characteristics, diagnostic modalities and treatment. Results from the "Cholangiocarcinoma―committee of the Italian Association for the Study of Liver disease. Digestive and Liver Disease, 2011, 43, 60-65.	0.9	59
56	Exendin-4, a glucagon-like peptide 1 receptor agonist, protects cholangiocytes from apoptosis. Gut, 2009, 58, 990-997.	12.1	58
57	Hemostatic balance in patients with liver cirrhosis: Report of a consensus conference. Digestive and Liver Disease, 2016, 48, 455-467.	0.9	57
58	Lack of NLRP3-inflammasome leads to gut-liver axis derangement, gut dysbiosis and a worsened phenotype in a mouse model of NAFLD. Scientific Reports, 2017, 7, 12200.	3.3	57
59	Effects of Vedolizumab in Patients With Primary Sclerosing Cholangitis and Inflammatory Bowel Diseases. Clinical Gastroenterology and Hepatology, 2020, 18, 179-187.e6.	4.4	57
60	Ursodeoxycholic acid inhibits hepatic cystogenesis in experimental models of polycystic liver disease. Journal of Hepatology, 2015, 63, 952-961.	3.7	56
61	Insulin inhibits secretin-induced ductal secretion by activation of PKC alpha and inhibition of PKA activity. Hepatology, 2002, 36, 641-651.	7.3	55
62	Adrenergic receptor agonists prevent bile duct injury induced by adrenergic denervation by increased cAMP levels and activation of Akt. American Journal of Physiology - Renal Physiology, 2006, 290, G813-G826.	3.4	55
63	Inhibition of metalloprotease hyperactivity in cystic cholangiocytes halts the development of polycystic liver diseases. Gut, 2014, 63, 1658-1667.	12.1	55
64	Signalling networks in cholangiocarcinoma: Molecular pathogenesis, targeted therapies and drug resistance. Liver International, 2019, 39, 43-62.	3.9	54
65	Selective inhibition of ion transport mechanisms regulating intracellular pH reduces proliferation and induces apoptosis in cholangiocarcinoma cells. Digestive and Liver Disease, 2007, 39, 60-69.	0.9	53
66	Increased susceptibility of cholangiocytes to tumor necrosis factor-α cytotoxicity after bile duct ligation. American Journal of Physiology - Cell Physiology, 2003, 285, C183-C194.	4.6	52
67	Serum and Biliary Insulin-like Growth Factor I and Vascular Endothelial Growth Factor in Determining the Cause of Obstructive Cholestasis. Annals of Internal Medicine, 2007, 147, 451.	3.9	52
68	Pathway-based analysis of primary biliary cirrhosis genome-wide association studies. Genes and Immunity, 2013, 14, 179-186.	4.1	52
69	Hepatoprotective and antifibrotic effect of a new silybin–phosphatidylcholine–Vitamin E complex in rats. Digestive and Liver Disease, 2005, 37, 869-876.	0.9	51
70	Regulation of ERK/JNK/p70S6K in two rat models of liver injury and fibrosis. Journal of Hepatology, 2003, 39, 528-537.	3.7	48
71	Role of endogenous opioids in modulating HSC activity in vitro and liver fibrosis in vivo. Gut, 2008, 57, 352-364.	12.1	48
72	Taurocholate prevents the loss of intrahepatic bile ducts due to vagotomy in bile duct-ligated rats. American Journal of Physiology - Renal Physiology, 2003, 284, G837-G852.	3.4	46

Marco Marzioni

#	Article	IF	CITATIONS
73	Increased local dopamine secretion has growthâ€promoting effects in cholangiocarcinoma. International Journal of Cancer, 2010, 126, 2112-2122.	5.1	46
74	Melatonin exerts by an autocrine loop antiproliferative effects in cholangiocarcinoma; its synthesis is reduced favoring cholangiocarcinoma growth. American Journal of Physiology - Renal Physiology, 2011, 301, G623-G633.	3.4	46
75	Semaphorin 7A Contributes to TGF-β–Mediated Liver Fibrogenesis. American Journal of Pathology, 2013, 183, 820-830.	3.8	46
76	Molecular pathology of biliary tract cancers. Cancer Letters, 2007, 250, 155-167.	7.2	45
77	Selective Na+/H+ exchange inhibition by cariporide reduces liver fibrosis in the rat. Hepatology, 2003, 37, 256-266.	7.3	44
78	Cholangiocyte Injury and Ductopenic Syndromes. Seminars in Liver Disease, 2007, 27, 401-412.	3.6	43
79	Nlrp3 Activation Induces Il-18 Synthesis and Affects the Epithelial Barrier Function in Reactive Cholangiocytes. American Journal of Pathology, 2017, 187, 366-376.	3.8	43
80	Genetic association analysis identifies variants associated with disease progression in primary sclerosing cholangitis. Gut, 2018, 67, 1517-1524.	12.1	42
81	Endogenous Opioids Modulate the Growth of the Biliary Tree in the Course of Cholestasis. Gastroenterology, 2006, 130, 1831-1847.	1.3	41
82	Knockout of secretin receptor reduces biliary damage and liver fibrosis in Mdr2â^'/â^' mice by diminishing senescence of cholangiocytes. Laboratory Investigation, 2018, 98, 1449-1464.	3.7	41
83	Endoplasmic Reticulum stress induces hepatic stellate cell apoptosis and contributes to fibrosis resolution. Liver International, 2012, 32, 1574-1584.	3.9	40
84	Italian Clinical Practice Guidelines on Cholangiocarcinoma – Part I: Classification, diagnosis and staging. Digestive and Liver Disease, 2020, 52, 1282-1293.	0.9	40
85	Progesterone stimulates the proliferation of female and male cholangiocytes via autocrine/paracrine mechanisms. American Journal of Physiology - Renal Physiology, 2008, 295, G124-G136.	3.4	39
86	On-treatment serum albumin level can guide long-term treatment in patients with cirrhosis and uncomplicated ascites. Journal of Hepatology, 2021, 74, 340-349.	3.7	38
87	Role of Cholangiocytes in Primary Biliary Cirrhosis. Seminars in Liver Disease, 2014, 34, 273-284.	3.6	37
88	Current and novel therapeutic opportunities for systemic therapy in biliary cancer. British Journal of Cancer, 2020, 123, 1047-1059.	6.4	37
89	Intracellular pH regulation and Na + /H + exchange activity in human hepatic stellate cells: effect of platelet-derived growth factor, insulin-like growth factor 1 and insulin. Journal of Hepatology, 2001, 34, 378-385.	3.7	35
90	Taurocholate feeding prevents CCl ₄ -induced damage of large cholangiocytes through PI3-kinase-dependent mechanism. American Journal of Physiology - Renal Physiology, 2003, 284, G290-G301.	3.4	35

#	Article	IF	CITATIONS
91	Prolactin stimulates the proliferation of normal female cholangiocytes by differential regulation of Ca2+-dependent PKC isoforms. BMC Physiology, 2007, 7, 6.	3.6	35
92	Knockout of the neurokinin-1 receptor reduces cholangiocyte proliferation in bile duct-ligated mice. American Journal of Physiology - Renal Physiology, 2011, 301, G297-G305.	3.4	35
93	Italian Clinical Practice Guidelines on Cholangiocarcinoma – Part II: Treatment. Digestive and Liver Disease, 2020, 52, 1430-1442.	0.9	35
94	An oestrogen receptor Î ² -selective agonist exerts anti-neoplastic effects in experimental intrahepatic cholangiocarcinoma. Digestive and Liver Disease, 2012, 44, 134-142.	0.9	34
95	Endothelin inhibits cholangiocarcinoma growth by a decrease in the vascular endothelial growth factor expression. Liver International, 2009, 29, 1031-1042.	3.9	33
96	Real-world experience with obeticholic acid in patients with primary biliary cholangitis. JHEP Reports, 2021, 3, 100248.	4.9	33
97	Secretin/secretin receptor signaling mediates biliary damage and liver fibrosis in earlyâ€stage primary biliary cholangitis. FASEB Journal, 2019, 33, 10269-10279.	0.5	32
98	Interobserver agreement in contrast harmonic endoscopic ultrasound. Journal of Gastroenterology and Hepatology (Australia), 2012, 27, 1063-1069.	2.8	31
99	Epidemiology of primary biliary cholangitis in Italy: Evidence from a real-world database. Digestive and Liver Disease, 2019, 51, 724-729.	0.9	31
100	Recent advances in the regulation of cholangiocyte proliferation and function during extrahepatic cholestasis. Digestive and Liver Disease, 2010, 42, 245-252.	0.9	30
101	Measurement of Gamma Glutamyl Transferase to Determine Risk of Liver Transplantation or Death in Patients With Primary Biliary Cholangitis. Clinical Gastroenterology and Hepatology, 2021, 19, 1688-1697.e14.	4.4	30
102	Lin28 and let-7: roles and regulation in liver diseases. American Journal of Physiology - Renal Physiology, 2016, 310, G757-G765.	3.4	29
103	Knockout of the primary sclerosing cholangitisâ€risk gene Fut2 causes liver disease in mice. Hepatology, 2017, 66, 542-554.	7.3	29
104	Inflammation and the Gut-Liver Axis in the Pathophysiology of Cholangiopathies. International Journal of Molecular Sciences, 2018, 19, 3003.	4.1	29
105	Control of Cholangiocyte Adaptive Responses by Visceral Hormones and Neuropeptides. Clinical Reviews in Allergy and Immunology, 2009, 36, 13-22.	6.5	28
106	Accuracy of Transient Elastography in Assessing Fibrosis at Diagnosis in NaÃ⁻ve Patients With Primary Biliary Cholangitis: A Dual Cutâ€Off Approach. Hepatology, 2021, 74, 1496-1508.	7.3	28
107	Gastrin reverses established cholangiocyte proliferation and enhanced secretin-stimulated ductal secretion of BDL rats by activation of apoptosis through increased expression of Ca2+ -dependent PKC isoforms. Liver International, 2003, 23, 78-88.	3.9	27
108	Shear wave elastography and transient elastography in HCV patients after direct-acting antivirals. Radiologia Medica, 2021, 126, 894-899.	7.7	27

#	Article	IF	CITATIONS
109	X Chromosome Contribution to the Genetic Architecture of Primary Biliary Cholangitis. Gastroenterology, 2021, 160, 2483-2495.e26.	1.3	27
110	Nervous and Neuroendocrine regulation of the pathophysiology of cholestasis and of biliary carcinogenesis. World Journal of Gastroenterology, 2006, 12, 3471.	3.3	25
111	PDX-1/Hes-1 interactions determine cholangiocyte proliferative response to injury in rodents: Possible implications for sclerosing cholangitis. Journal of Hepatology, 2013, 58, 750-756.	3.7	24
112	Mouse Models of Liver Fibrosis Mimic Human Liver Fibrosis of Different Etiologies. Current Pathobiology Reports, 2014, 2, 143-153.	3.4	24
113	Cytoprotective effects of taurocholic acid feeding on the biliary tree after adrenergic denervation of the liver. Liver International, 2007, 27, 558-568.	3.9	23
114	Common issues in the management of patients in the waiting list and after liver transplantation. Digestive and Liver Disease, 2017, 49, 241-253.	0.9	23
115	Primary Biliary Cholangitis: advances in management and treatment of the disease. Digestive and Liver Disease, 2017, 49, 841-846.	0.9	23
116	Rearrangement of the cytoskeletal network induced by platelet-derived growth factor in rat hepatic stellate cells: role of different intracellular signalling pathways. Journal of Hepatology, 2002, 36, 179-190.	3.7	22
117	Endogenous opioid peptides and chronic liver disease: From bedside to bench. Journal of Hepatology, 2007, 46, 583-586.	3.7	22
118	Activation of the developmental pathway neurogenin-3/microRNA-7a regulates cholangiocyte proliferation in response to injury. Hepatology, 2014, 60, 1324-1335.	7.3	22
119	Proteostasis disturbances and endoplasmic reticulum stress contribute to polycystic liver disease: New therapeutic targets. Liver International, 2020, 40, 1670-1685.	3.9	22
120	Soluble CD163 and mannose receptor as markers of liver disease severity and prognosis in patients with primary biliary cholangitis. Liver International, 2020, 40, 1408-1414.	3.9	22
121	TREM-2 plays a protective role in cholestasis by acting as a negative regulator of inflammation. Journal of Hepatology, 2022, 77, 991-1004.	3.7	22
122	Gut–Liver Axis and Inflammasome Activation in Cholangiocyte Pathophysiology. Cells, 2020, 9, 736.	4.1	20
123	The significance of genetics for cholangiocarcinoma development. Annals of Translational Medicine, 2013, 1, 28.	1.7	20
124	Thyroid hormone inhibits biliary growth in bile duct-ligated rats by PLC/IP3/Ca2+-dependent downregulation of SRC/ERK1/2. American Journal of Physiology - Cell Physiology, 2007, 292, C1467-C1475.	4.6	19
125	GS-02-Efficacy of GKT831 in patients with primary biliary cholangitis and inadequate response to ursodeoxycholic acid: Interim efficacy results of a phase 2 clinical trial. Journal of Hepatology, 2019, 70, e1-e2.	3.7	18
126	The Management of Cholestatic Liver Diseases: Current Therapies and Emerging New Possibilities. Journal of Clinical Medicine, 2021, 10, 1763.	2.4	17

#	Article	IF	CITATIONS
127	Estrogens maintain bile duct mass and reduce apoptosis after biliodigestive anastomosis in bile duct ligated rats. Journal of Hepatology, 2006, 44, 1158-1166.	3.7	16
128	Clinical implications of novel aspects of biliary pathophysiology. Digestive and Liver Disease, 2010, 42, 238-244.	0.9	16
129	Castration inhibits biliary proliferation induced by bile duct obstruction: novel role for the autocrine trophic effect of testosterone. American Journal of Physiology - Renal Physiology, 2011, 301, G981-G991.	3.4	16
130	Ombitasvir, paritaprevir, and ritonavir, with or without dasabuvir, plus ribavirin for patients with hepatitis C virus genotype 1 or 4 infection with cirrhosis (ABACUS): a prospective observational study. The Lancet Gastroenterology and Hepatology, 2017, 2, 427-434.	8.1	15
131	Carriers of <i>ABCB4</i> gene variants show a mild clinical course, but impaired quality of life and limited risk for cholangiocarcinoma. Liver International, 2020, 40, 3042-3050.	3.9	15
132	Impact on followâ€up strategies in patients with primary sclerosing cholangitis. Liver International, 2023, 43, 127-138.	3.9	15
133	Taurohyodeoxycholate- and tauroursodeoxycholate-induced hypercholeresis is augmented in bile duct ligated rats. Journal of Hepatology, 2003, 38, 136-147.	3.7	14
134	Pancreatic Duodenal Homeobox-1 de novo expression drives cholangiocyte neuroendocrine-like transdifferentiation. Journal of Hepatology, 2010, 53, 663-670.	3.7	14
135	Targeting UBC9-mediated protein hyper-SUMOylation in cystic cholangiocytes halts polycystic liver disease in experimental models. Journal of Hepatology, 2021, 74, 394-406.	3.7	14
136	Aging and the Biological Response to Liver Injury. Seminars in Liver Disease, 2020, 40, 225-232.	3.6	13
137	Human cholangiocarcinoma development is associated with dysregulation of opioidergic modulation of cholangiocyte growth. Digestive and Liver Disease, 2009, 41, 523-533.	0.9	12
138	New insights in hepatocellular carcinoma: from bench to bedside. Annals of Translational Medicine, 2013, 1, 15.	1.7	12
139	Taurocholic acid feeding prevents tumor necrosis factor-alpha-induced damage of cholangiocytes by a PI3K-mediated pathway. Experimental Biology and Medicine, 2007, 232, 942-9.	2.4	12
140	Hepatitis E in a region of Italy: An emerging autochthonous infection?. Digestive and Liver Disease, 2016, 48, 1340-1345.	0.9	11
141	Autocrine regulation of biliary pathology by activated cholangiocytes. American Journal of Physiology - Renal Physiology, 2012, 302, G473-G483.	3.4	10
142	Cholangiocarcinoma development: The resurgence of bile acids. Hepatology, 2014, 60, 795-797.	7.3	10
143	Development and functional characterization of extrahepatic cholangiocyte lines from normal rats. Digestive and Liver Disease, 2015, 47, 964-972.	0.9	10
144	Triple therapy with first-generation Protease Inhibitors for patients with genotype 1 chronic hepatitis C: Recommendations of the Italian Association for the Study of the Liver (AISF). Digestive and Liver Disease, 2014, 46, 18-24.	0.9	9

#	Article	IF	CITATIONS
145	Agingâ€Related Expression of Twinfilinâ€1 Regulates Cholangiocyte Biological Response to Injury. Hepatology, 2019, 70, 883-898.	7.3	9
146	Aging-Related Molecular Pathways in Chronic Cholestatic Conditions. Frontiers in Medicine, 2019, 6, 332.	2.6	9
147	PDX-1 mRNA expression in endoscopic ultrasound-guided fine needle cytoaspirate: Perspectives in the diagnosis of pancreatic cancer. Digestive and Liver Disease, 2015, 47, 138-143.	0.9	8
148	Bile Acids in Polycystic Liver Diseases: Triggers of Disease Progression and Potential Solution for Treatment. Digestive Diseases, 2017, 35, 275-281.	1.9	8
149	HDL cholesterol protects from liver injury in mice with intestinal specific LXR $\hat{I}\pm$ activation. Liver International, 2020, 40, 3127-3139.	3.9	8
150	Safety and efficacy of ombitasvir/paritaprevir/ritonavir/dasabuvir plus ribavirin in patients over 65Âyears with HCV genotype 1 cirrhosis. Infection, 2018, 46, 607-615.	4.7	7
151	Inhibition of NAEâ€dependent protein hyperâ€NEDDylation in cystic cholangiocytes halts cystogenesis in experimental models of polycystic liver disease. United European Gastroenterology Journal, 2021, 9, 848-859.	3.8	7
152	Machine learning in primary biliary cholangitis: A novel approach for risk stratification. Liver International, 2022, 42, 615-627.	3.9	7
153	Novel interaction of bile acid and neural signaling in the regulation of cholangiocyte function. Hepatology Research, 2007, 37, S420-9.	3.4	6
154	Role of apoptosis in development of primary biliary cirrhosis. Digestive and Liver Disease, 2001, 33, 531-533.	0.9	5
155	Locally acquired hepatitis E virus in Marche Italy: Clinical/laboratory features and outcome. Digestive and Liver Disease, 2020, 52, 434-439.	0.9	4
156	Involvement of Autophagy in Ageing and Chronic Cholestatic Diseases. Cells, 2021, 10, 2772.	4.1	4
157	Manipulation of the gut–liver axis by interruption of bile acid recirculation: an option for the treatment of sclerosing cholangitis?. Gut, 2018, 67, 1565-1567.	12.1	3
158	Hernia of Morgagni and Mediastinal Lipoma: A Case Report. Annals of Thoracic and Cardiovascular Surgery, 2011, 17, 77-80.	0.8	2
159	Cholangiocytes in health and disease: From basic science to novel treatments. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2018, 1864, 1217-1219.	3.8	2
160	Gastrointestinal disorders as immune-related adverse events. Exploration of Targeted Anti-tumor Therapy, 0, , .	0.8	2
161	Role of autophagy in cholangiocarcinoma: Pathophysiology and implications for therapy. World Journal of Clinical Cases, 2021, 9, 6234-6243.	0.8	2
162	Functional Heterogeneity of the Intrahepatic Biliary Epithelium. , 2020, , 245-254.		2

Functional Heterogeneity of the Intrahepatic Biliary Epithelium. , 2020, , 245-254. 162

#	Article	IF	CITATIONS
163	Nerve Regulation of Cholangiocyte Functions. , 2020, , 199-209.		2
164	Effects of a reorganization of cirrhosis care during the lockdown for SARS-CoV-2 outbreak. JHEP Reports, 2021, 3, 100229.	4.9	1
165	Angiogenic factors in chronic liver diseases: the effects on hepatic progenitor cells. Hepatobiliary Surgery and Nutrition, 2013, 2, 61-4.	1.5	1
166	Liver Regeneration. , 2015, , 229-241.		0
167	The Investigative Therapeutic Pipeline for Cholangiocarcinoma: Insights from Model Systems. , 2021, , 555-575.		0
168	Presentation, Management and Outcome of Cholangiocarcinoma in Europe: Results From Real-World Patient Registry. SSRN Electronic Journal, 0, , .	0.4	0
169	Current Targets for Primary Sclerosing Cholangitis. Current Drug Targets, 2017, 18, 901-907.	2.1	0
170	Research Strands in Dermatology and Gastroenterology Units of Department of Clinical and Molecular Sciences in Polytechnic Marche University. , 2020, , 221-246.		0
171	Therapeutic effects of dexamethasone-loaded hyaluronan nanogels in the experimental cholestasis. Drug Delivery and Translational Research, 2022, , 1.	5.8	Ο