
Steffen Frey

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4854049/publications.pdf

Version: 2024-02-01

STEFFEN FDEV

#	Article	IF	CITATIONS
1	FG-Rich Repeats of Nuclear Pore Proteins Form a Three-Dimensional Meshwork with Hydrogel-Like Properties. Science, 2006, 314, 815-817.	12.6	555
2	A Saturated FG-Repeat Hydrogel Can Reproduce the Permeability Properties of Nuclear Pore Complexes. Cell, 2007, 130, 512-523.	28.9	460
3	Characterisation of the passive permeability barrier of nuclear pore complexes. EMBO Journal, 2009, 28, 2541-2553.	7.8	309
4	The ALFA-tag is a highly versatile tool for nanobody-based bioscience applications. Nature Communications, 2019, 10, 4403.	12.8	278
5	Systematic analysis of barrier-forming FG hydrogels from Xenopus nuclear pore complexes. EMBO Journal, 2012, 32, 204-218.	7.8	175
6	Amyloid-like interactions within nucleoporin FG hydrogels. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 6281-6285.	7.1	172
7	Myelin Membrane Assembly Is Driven by a Phase Transition of Myelin Basic Proteins Into a Cohesive Protein Meshwork. PLoS Biology, 2013, 11, e1001577.	5.6	148
8	A new set of highly efficient, tag-cleaving proteases for purifying recombinant proteins. Journal of Chromatography A, 2014, 1337, 95-105.	3.7	133
9	Surface Properties Determining Passage Rates of Proteins through Nuclear Pores. Cell, 2018, 174, 202-217.e9.	28.9	128
10	FG/FxFG as well as GLFG repeats form a selective permeability barrier with self-healing properties. EMBO Journal, 2009, 28, 2554-2567.	7.8	111
11	A Size Barrier Limits Protein Diffusion at the Cell Surface to Generate Lipid-Rich Myelin-Membrane Sheets. Developmental Cell, 2011, 21, 445-456.	7.0	105
12	Ultrathin nucleoporin phenylalanine–glycine repeat films and their interaction with nuclear transport receptors. EMBO Reports, 2010, 11, 366-372.	4.5	101
13	Scp160p, an RNA-binding, Polysome-associated Protein, Localizes to the Endoplasmic Reticulum of Saccharomyces cerevisiae in a Microtubule-dependent Manner. Journal of Biological Chemistry, 2001, 276, 15905-15912.	3.4	97
14	Asc1p, a WD40-domain containing adaptor protein, is required for the interaction of the RNA-binding protein Scp160p with polysomes. Biochemical Journal, 2004, 380, 823-830.	3.7	97
15	Viscoelasticity of Thin Biomolecular Films: A Case Study on Nucleoporin Phenylalanine-Glycine Repeats Grafted to a Histidine-Tag Capturing QCM-D Sensor. Biomacromolecules, 2012, 13, 2322-2332.	5.4	86
16	A physical model describing the interaction of nuclear transport receptors with FG nucleoporin domain assemblies. ELife, 2016, 5, .	6.0	69
17	Purification of protein complexes of defined subunit stoichiometry using a set of orthogonal, tag-cleaving proteases. Journal of Chromatography A, 2014, 1337, 106-115.	3.7	51
18	Cohesiveness tunes assembly and morphology of FG nucleoporin domain meshworks – Implications for nuclear pore permeability. Biophysical Journal, 2013, 105, 1860-1870.	0.5	42

STEFFEN FREY

#	Article	IF	CITATIONS
19	Spatial structure of disordered proteins dictates conductance and selectivity in nuclear pore complex mimics. ELife, 2018, 7, .	6.0	37
20	Reversible Immobilization of Proteins in Sensors and Solid‣tate Nanopores. Small, 2018, 14, e1703357.	10.0	30
21	Structural Characterization of Nanoscale Meshworks within a Nucleoporin FG Hydrogel. Biomacromolecules, 2012, 13, 1882-1889.	5.4	27
22	Engineered SUMO/protease system identifies Pdr6 as a bidirectional nuclear transport receptor. Journal of Cell Biology, 2019, 218, 2006-2020.	5.2	25
23	A Multimeric Membrane Protein Reveals 14-3-3 Isoform Specificity in Forward Transport in Yeast. Traffic, 2006, 7, 903-916.	2.7	23
24	The Xenopus laevis Atg4B Protease: Insights into Substrate Recognition and Application for Tag Removal from Proteins Expressed in Pro- and Eukaryotic Hosts. PLoS ONE, 2015, 10, e0125099.	2.5	7
25	The Supramolecular Assembly of Intrinsically Disordered Nucleoporin Domains is Tuned by Inter-Chain Interactions. Biophysical Journal, 2013, 104, 120a.	0.5	3
26	Discovery and Characterization of an ALFA-Tag-Specific Affinity Resin Optimized for Protein Purification at Low Temperatures in Physiological Buffer. Biomolecules, 2021, 11, 269.	4.0	2
27	Biomimetic Nanopores for Studying Yeast Nuclear Pore Transport. Biophysical Journal, 2016, 110, 335a.	0.5	0