

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4853973/publications.pdf Version: 2024-02-01

Μι Ρανι

#	Article	IF	CITATIONS
1	Rethinking lean synergistically inÂpractice for construction industry improvements. Engineering, Construction and Architectural Management, 2023, 30, 2669-2690.	1.8	4
2	Critical considerations on tower crane layout planning for high-rise modular integrated construction. Engineering, Construction and Architectural Management, 2022, 29, 2615-2634.	1.8	13
3	Integrated Offsite Logistics Scheduling Approach for High-Rise Modular Building Projects. Journal of Construction Engineering and Management - ASCE, 2022, 148, .	2.0	12
4	Artificial Intelligence and Robotics for Prefabricated and Modular Construction: A Systematic Literature Review. Journal of Construction Engineering and Management - ASCE, 2022, 148, .	2.0	23
5	Sources of Uncertainties in Offsite Logistics of Modular Construction for High-Rise Building Projects. Journal of Management in Engineering - ASCE, 2021, 37, .	2.6	58
6	Drivers, barriers and strategies for zero carbon buildings in high-rise high-density cities. Energy and Buildings, 2021, 242, 110970.	3.1	30
7	Knowledge, attitude and practice towards zero carbon buildings: Hong Kong case. Journal of Cleaner Production, 2020, 274, 122819.	4.6	15
8	Stakeholder Perceptions of the Future Application of Construction Robots for Buildings in a Dialectical System Framework. Journal of Management in Engineering - ASCE, 2020, 36, .	2.6	32
9	Understanding the Determinants of Construction Robot Adoption: Perspective of Building Contractors. Journal of Construction Engineering and Management - ASCE, 2020, 146, .	2.0	37
10	A â€ [~] demand-supply-regulation-institution' stakeholder partnership model of delivering zero carbon buildings. Sustainable Cities and Society, 2020, 62, 102359.	5.1	15
11	Influencing factors of the future utilisation of construction robots for buildings: A Hong Kong perspective. Journal of Building Engineering, 2020, 30, 101220.	1.6	38
12	Structuring the context for construction robot development through integrated scenario approach. Automation in Construction, 2020, 114, 103174.	4.8	41
13	Virtual Prototyping-Based Path Planning of Unmanned Aerial Vehicles for Building Exterior Inspection. , 2020, , .		2
14	A Novel Methodological Framework of Smart Project Delivery of Modular Integrated Construction. , 2020, , .		0
15	Determinants of Adoption of Robotics in Precast Concrete Production for Buildings. Journal of Management in Engineering - ASCE, 2019, 35, .	2.6	63
16	â€~Co-evolution through interaction' of innovative building technologies: The case of modular integrated construction and robotics. Automation in Construction, 2019, 107, 102932.	4.8	59
17	Opportunities and risks of implementing zero-carbon building policy for cities: Hong Kong case. Applied Energy, 2019, 256, 113835.	5.1	17
18	A framework of indicators for assessing construction automation and robotics in the sustainability context. Journal of Cleaner Production, 2018, 182, 82-95.	4.6	118

Mi Pan

#	Article	IF	CITATIONS
19	A Framework for Utilizing Automated and Robotic Construction for Sustainable Building. , 2018, , 79-88.		3
20	A dialectical system framework of zero carbon emission building policy for high-rise high-density cities: Perspectives from Hong Kong. Journal of Cleaner Production, 2018, 205, 1-13.	4.6	49
21	Identification of Usage Scenarios for Robotic Exoskeletons in the Context of the Hong Kong Construction Industry. , 2018, , .		7
22	Performance analysis of scheduling rules in remanufacturing operations using stochastic Petri nets. , 2014, , .		3
23	Palm Vein Recognition Based on Three Local Invariant Feature Extraction Algorithms. Lecture Notes in Computer Science, 2011, , 116-124.	1.0	33
24	Motion planning for efficient and safe module transportation in modular integrated construction. Computer-Aided Civil and Infrastructure Engineering, 0, , .	6.3	2