James Knox Russell

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4853566/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Multicenter, Randomized, Controlled Trial of 150-J Biphasic Shocks Compared With 200- to 360-J Monophasic Shocks in the Resuscitation of Out-of-Hospital Cardiac Arrest Victims. Circulation, 2000, 102, 1780-1787.	1.6	331
2	Biphasic versus monophasic shock waveform for conversion of atrial fibrillation. Journal of the American College of Cardiology, 2002, 39, 1956-1963.	2.8	204
3	The Quality of Chest Compressions During Cardiopulmonary Resuscitation Overrides Importance of Timing of Defibrillation. Chest, 2007, 132, 70-75.	0.8	109
4	Optimal Response to Cardiac Arrest study: Defibrillation waveform effects. Resuscitation, 2001, 49, 233-243.	3.0	98
5	Refibrillation, resuscitation and survival in out-of-hospital sudden cardiac arrest victims treated with biphasic automated external defibrillators. Resuscitation, 2002, 55, 17-23.	3.0	94
6	Transthoracic impedance does not affect defibrillation, resuscitation or survival in patients with out-of-hospital cardiac arrest treated with a non-escalating biphasic waveform defibrillator. Resuscitation, 2005, 64, 63-69.	3.0	65
7	Reliability and accuracy of the thoracic impedance signal for measuring cardiopulmonary resuscitation quality metrics. Resuscitation, 2015, 88, 28-34.	3.0	37
8	AED use in businesses, public facilities and homes by minimally trained first responders. Resuscitation, 2003, 59, 225-233.	3.0	36
9	A user-friendly integrated monitor-adhesive patch for long-term ambulatory electrocardiogram monitoring. Journal of Electrocardiology, 2012, 45, 148-153.	0.9	35
10	Circulation detection using the electrocardiogram and the thoracic impedance acquired by defibrillation pads. Resuscitation, 2016, 99, 56-62.	3.0	35
11	Altruism in Coati Bands: Nepotism or Reciprocity?. , 1983, , 263-290.		35
12	Influence of chest compression artefact on capnogram-based ventilation detection during out-of-hospital cardiopulmonary resuscitation. Resuscitation, 2018, 124, 63-68.	3.0	33
13	Exclusion of Adult Male Coatis from Social Groups: Protection from Predation. Journal of Mammalogy, 1981, 62, 206-208.	1.3	30
14	Feasibility of the capnogram to monitor ventilation rate during cardiopulmonary resuscitation. Resuscitation, 2017, 110, 162-168.	3.0	29
15	Analysis of the ventricular fibrillation waveform in refibrillation. Critical Care Medicine, 2006, 34, S432-S437.	0.9	28
16	A high peak current 150-J fixed-energy defibrillation protocol treats recurrent ventricular fibrillation (VF) as effectively as initial VF. Resuscitation, 2008, 79, 28-33.	3.0	28
17	Body weight does not affect defibrillation, resuscitation, or survival in patients with out-of-hospital cardiac arrest treated with a nonescalating biphasic waveform defibrillator. Critical Care Medicine, 2004, 32, S387-S392.	0.9	27
18	Feedback on the Rate and Depth of Chest Compressions during Cardiopulmonary Resuscitation Using Only Accelerometers. PLoS ONE, 2016, 11, e0150139.	2.5	27

#	Article	IF	CITATIONS
19	Overcoming barriers to developing seamless ST-segment elevation myocardial infarction care systems in the United States: recommendations from a comprehensive Prehospital 12-lead Electrocardiogram Working Group. Journal of Electrocardiology, 2009, 42, 426-431.	0.9	21
20	Chest compression rate feedback based on transthoracic impedance. Resuscitation, 2015, 93, 82-88.	3.0	14
21	Effects of Interspecific Dominance among Egrets Commensally Following Roseate Spoonbills. Auk, 1978, 95, 608-610.	1.4	13
22	The effects of phase duration on defibrillation success of dual time constant biphasic waveforms. Resuscitation, 2010, 81, 236-241.	3.0	13
23	Can thoracic impedance monitor the depth of chest compressions during out-of-hospital cardiopulmonary resuscitation?. Resuscitation, 2014, 85, 637-643.	3.0	12
24	A Feasibility Study for Measuring Accurate Chest Compression Depth and Rate on Soft Surfaces Using Two Accelerometers and Spectral Analysis. BioMed Research International, 2016, 2016, 1-7.	1.9	12
25	Enhancing ventilation detection during cardiopulmonary resuscitation by filtering chest compression artifact from the capnography waveform. PLoS ONE, 2018, 13, e0201565.	2.5	10
26	Chest compressions induce errors in end-tidal carbon dioxide measurement. Resuscitation, 2020, 153, 195-201.	3.0	10
27	Quality of ECG Monitoring with a Miniature ECG Recorder. PACE - Pacing and Clinical Electrophysiology, 2008, 31, 676-684.	1.2	9
28	Enhancement of capnogram waveform in the presence of chest compression artefact during cardiopulmonary resuscitation. Resuscitation, 2018, 133, 53-58.	3.0	9
29	Association of chest compression and recoil velocities with depth and rate in manual cardiopulmonary resuscitation. Resuscitation, 2019, 142, 119-126.	3.0	9
30	Chest stiffness dynamics in extended continuous compressions cardiopulmonary resuscitation. Resuscitation, 2021, 162, 198-204.	3.0	9
31	Early experience with a novel ambulatory monitor. Journal of Electrocardiology, 2007, 40, S160-S164.	0.9	8
32	Detection of ventricular ectopy by a novel miniature electrocardiogram recorder. Journal of Electrocardiology, 2011, 44, 222-228.	0.9	8
33	Can chest compression release rate or recoil velocity identify rescuer leaning in out-of-hospital cardiopulmonary resuscitation?. Resuscitation, 2018, 130, 133-137.	3.0	8
34	The impact of ventilation rate on end-tidal carbon dioxide level during manual cardiopulmonary resuscitation. Resuscitation, 2020, 156, 215-222.	3.0	8
35	Modeling the impact of ventilations on the capnogram in out-of-hospital cardiac arrest. PLoS ONE, 2020, 15, e0228395.	2.5	7
36	Minimal interruption of cardiopulmonary resuscitation for a single shock as mandated by automated external defibrillations does not compromise outcomes in a porcine model of cardiac arrest and resuscitation. Critical Care Medicine, 2008, 36, 3048-3053.	0.9	6

JAMES KNOX RUSSELL

#	Article	IF	CITATIONS
37	Monitoring chest compression quality during cardiopulmonary resuscitation: Proof-of-concept of a single accelerometer-based feedback algorithm. PLoS ONE, 2018, 13, e0192810.	2.5	6
38	On detection of spontaneous pulse by photoplethysmography in cardiopulmonary resuscitation. American Journal of Emergency Medicine, 2020, 38, 526-533.	1.6	6
39	Assessment of the evolution of end-tidal carbon dioxide within chest compression pauses to detect restoration of spontaneous circulation. PLoS ONE, 2021, 16, e0251511.	2.5	6
40	Towards an algorithm for automatic accelerometer-based pulse presence detection during cardiopulmonary resuscitation. , 2016, 2016, 3531-3534.		5
41	Chest compression release and recoil dynamics in prolonged manual cardiopulmonary resuscitation. Resuscitation, 2021, 167, 180-187.	3.0	5
42	Monitoring respiratory rate with capnography during cardiopulmonary resuscitation. Resuscitation, 2014, 85, S26-S27.	3.0	4
43	Contribution of chest compressions to end-tidal carbon dioxide levels generated during out-of-hospital cardiopulmonary resuscitation. Resuscitation, 2022, 179, 225-232.	3.0	4
44	Exclusion of a patient assessment interval and extension of the CPR interval both mitigate post-resuscitation myocardial dysfunction in a swine model of cardiac arrest. Resuscitation, 2008, 76, 285-290.	3.0	3
45	Patterned Freeze-Brands with Canned Freon. Journal of Wildlife Management, 1981, 45, 1078.	1.8	1
46	ECG analysis in CPR identifies shockable rhythms with high likelihood of ROSC. Resuscitation, 2008, 77, S53-S54.	3.0	1
47	Accurate feedback of chest compression depth and rate on a manikin in a moving train. Resuscitation, 2015, 96, 13.	3.0	1
48	Performance of cardiopulmonary resuscitation feedback systems in a long-distance train with distributed traction. Technology and Health Care, 2018, 26, 529-535.	1.2	1
49	Chest compression artefact compromises real-time feedback capnometry: quantification of differences in end-tidal measurements by two capnometers. Resuscitation, 2019, 142, e32.	3.0	1
50	Chest Compression Metrics During Manual Cardiopulmonary Resuscitation: a Manikin Study. , 0, , .		1
51	The guidelines got it right on defibrillation energy protocol. Resuscitation, 2009, 80, 1438.	3.0	0
52	Central site photoplethysmography tracks arterial pressure during resuscitation. Resuscitation, 2014, 85, S12.	3.0	0
53	A method to measure ventilation rate during cardiopulmonary resuscitation using the capnogram. , 2015, , .		0
54	Pulse appearance in photoplethysmography signals obtained from finger, nose and ear during extracorporeal life support. Resuscitation, 2015, 96, 44.	3.0	0

JAMES KNOX RUSSELL

#	Article	IF	CITATIONS
55	Suppression of chest compression artefact to enhance reliability of capnography waveform analysis during cardiopulmonary resuscitation. Resuscitation, 2018, 130, e15-e16.	3.0	0
56	A model for quantifying the influence of ventilations on end-tidal carbon dioxide variation during out-of-hospital cardiac arrest. Resuscitation, 2018, 130, e34-e35.	3.0	0
57	INTERRUPTION OF CPR FOR A SINGLE SHOCK AS MANDATED BY AEDS DOES NOT COMPROMISE OUTCOMES Critical Care Medicine, 2006, 34, A13.	0.9	Ο
58	Additive Model to Evaluate the Accuracy of Chest Compression Feedback Systems in Moving Vehicles. , 0, , .		0
59	Effect of Chest Compression Leaning on Accelerometry Waveforms. , 0, , .		Ο
60	Chest Diameter Measurement in Pediatric Patients for Chest Compression Feedback Calibration. , 0, , .		0
61	Open-loop Adaptive Filtering for Suppressing Chest Compression Oscillations in the Capnogram during Cardiopulmonary Resuscitation. , 0, , .		Ο
62	A Method to Suppress Chest Compression Artifact Enhancing Capnography-Based Ventilation Guidance During Cardiopulmonary Resuscitation. , 0, , .		0