
Mary O'Riordan

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/485345/publications.pdf Version: 2024-02-01

Μλον Ο'ΡιορολΝ

#	Article	IF	CITATIONS
1	Amino acids suppress macropinocytosis and promote release of CSF1 receptor in macrophages. Journal of Cell Science, 2022, 135, .	1.2	3
2	IFN-Î $^{ m i}$ is critical for normal wound repair and is decreased in diabetic wounds. JCI Insight, 2022, 7, .	2.3	5
3	Endoplasmic reticulum stress sensor IRE1α propels neutrophil hyperactivity in lupus. Journal of Clinical Investigation, 2021, 131, .	3.9	30
4	Salmonella enterica Serovar Typhimurium SPI-1 and SPI-2 Shape the Global Transcriptional Landscape in a Human Intestinal Organoid Model System. MBio, 2021, 12, .	1.8	15
5	The IRE1α Stress Signaling Axis Is a Key Regulator of Neutrophil Antimicrobial Effector Function. Journal of Immunology, 2021, 207, 210-220.	0.4	12
6	Comparative transcriptional profiling of the early host response to infection by typhoidal and non-typhoidal Salmonella serovars in human intestinal organoids. PLoS Pathogens, 2021, 17, e1009987.	2.1	12
7	Enhancing career development of postdoctoral trainees: act locally and beyond. Journal of Physiology, 2019, 597, 2317-2322.	1.3	10
8	MRSA in Stealth Mode Evades Antibody Recognition. Trends in Immunology, 2019, 40, 85-87.	2.9	1
9	Invasion of the Brain by <i>Listeria monocytogenes</i> Is Mediated by InIF and Host Cell Vimentin. MBio, 2018, 9, .	1.8	72
10	Mitochondria-Derived Vesicles Deliver Antimicrobial Reactive Oxygen Species to Control Phagosome-Localized Staphylococcus aureus. Cell Host and Microbe, 2018, 24, 625-636.e5.	5.1	160
11	The future of graduate and postdoctoral training in the biosciences. ELife, 2017, 6, .	2.8	47
12	Bacterial Metabolism Shapes the Hostâ \in "Pathogen Interface. Microbiology Spectrum, 2016, 4, .	1.2	65
13	Anti-infective Activity of 2-Cyano-3-Acrylamide Inhibitors with Improved Drug-Like Properties against Two Intracellular Pathogens. Antimicrobial Agents and Chemotherapy, 2016, 60, 4183-4196.	1.4	10
14	Measurement of Mitochondrial DNA Release in Response to ER Stress. Bio-protocol, 2016, 6, .	0.2	39
15	The Endoplasmic Reticulum Stress Sensor Inositol-Requiring Enzyme 1α Augments Bacterial Killing through Sustained Oxidant Production. MBio, 2015, 6, e00705.	1.8	45
16	Endoplasmic Reticulum Stress Activates the Inflammasome via NLRP3- and Caspase-2-Driven Mitochondrial Damage. Immunity, 2015, 43, 451-462.	6.6	328
17	A near death experience: <i>Shigella</i> manipulates host death machinery to silence innate immunity. EMBO Journal, 2014, 33, 2137-2139.	3.5	4
18	Listeria exploits damage and death to spread bad news. Trends in Microbiology, 2014, 22, 370-371.	3.5	1

MARY O'RIORDAN

#	Article	IF	CITATIONS
19	Chemical Derivatives of a Small Molecule Deubiquitinase Inhibitor Have Antiviral Activity against Several RNA Viruses. PLoS ONE, 2014, 9, e94491.	1.1	27
20	Small Molecule Deubiquitinase Inhibitors Promote Macrophage Anti-Infective Capacity. PLoS ONE, 2014, 9, e104096.	1.1	14
21	Regulation of Bacterial Pathogenesis by Intestinal Short-Chain Fatty Acids. Advances in Applied Microbiology, 2013, 85, 93-118.	1.3	238
22	More Than a Pore: The Cellular Response to Cholesterol-Dependent Cytolysins. Toxins, 2013, 5, 618-636.	1.5	71
23	Caspase-2 mediates a Brucella abortus RB51-induced hybrid cell death having features of apoptosis and pyroptosis. Frontiers in Cellular and Infection Microbiology, 2013, 3, 83.	1.8	23
24	Membrane Damage during Listeria monocytogenes Infection Triggers a Caspase-7 Dependent Cytoprotective Response. PLoS Pathogens, 2012, 8, e1002628.	2.1	33
25	Fatty Acids Regulate Stress Resistance and Virulence Factor Production for Listeria monocytogenes. Journal of Bacteriology, 2012, 194, 5274-5284.	1.0	92
26	A Small Molecule Deubiquitinase Inhibitor Increases Localization of Inducible Nitric Oxide Synthase to the Macrophage Phagosome and Enhances Bacterial Killing. Infection and Immunity, 2011, 79, 4850-4857.	1.0	13
27	A Complex Lipoate Utilization Pathway in Listeria monocytogenes. Journal of Biological Chemistry, 2011, 286, 31447-31456.	1.6	32
28	<i>Listeria monocytogenes</i> exploits cystic fibrosis transmembrane conductance regulator (CFTR) to escape the phagosome. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 1633-1638.	3.3	59
29	Branched-Chain Fatty Acids Promote <i>Listeria monocytogenes</i> Intracellular Infection and Virulence. Infection and Immunity, 2010, 78, 4667-4673.	1.0	48
30	Generation of Branched-Chain Fatty Acids through Lipoate-Dependent Metabolism Facilitates Intracellular Growth of <i>Listeria monocytogenes</i> . Journal of Bacteriology, 2009, 191, 2187-2196.	1.0	27
31	Homeostatic maintenance of pathogen-containing vacuoles requires TBK1-dependent regulation of <i>aquaporin-1</i> . Cellular Microbiology, 2008, 10, 2197-2207.	1.1	20
32	Inhibitor of Apoptosis Proteins in Eukaryotic Evolution and Development: A Model of Thematic Conservation. Developmental Cell, 2008, 15, 497-508.	3.1	79
33	XIAP Regulates Cytosol-Specific Innate Immunity to Listeria Infection. PLoS Pathogens, 2008, 4, e1000142.	2.1	92
34	TBK1 Protects Vacuolar Integrity during Intracellular Bacterial Infection. PLoS Pathogens, 2007, 3, e29.	2.1	66
35	Innate recognition of intracellular bacteria. Current Opinion in Immunology, 2007, 19, 10-16.	2.4	124
36	LplA1â€dependent utilization of host lipoyl peptides enables <i>Listeria</i> cytosolic growth and virulence. Molecular Microbiology, 2007, 66, 758-770.	1.2	67

Mary O'Riordan

#	Article	IF	CITATIONS
37	Intracellular innate resistance to bacterial pathogens. Cellular Microbiology, 2006, 8, 1720-1729.	1.1	77
38	Mice Lacking the Type I Interferon Receptor Are Resistant to Listeria monocytogenes. Journal of Experimental Medicine, 2004, 200, 527-533.	4.2	412
39	A specific gene expression program triggered by Gram-positive bacteria in the cytosol. Proceedings of the United States of America, 2004, 101, 11386-11391.	3.3	178
40	Listeria Intracellular Growth and Virulence Require Host-Derived Lipoic Acid. Science, 2003, 302, 462-464.	6.0	145
41	Innate recognition of bacteria by a macrophage cytosolic surveillance pathway. Proceedings of the National Academy of Sciences of the United States of America, 2002, 99, 13861-13866.	3.3	265
42	The host cytosol: front-line or home front?. Trends in Microbiology, 2002, 10, 361-364.	3.5	49
43	Bacterial growth in the cytosol: lessons from Listeria. Trends in Microbiology, 2002, 10, 495.	3.5	0
44	Transcriptional regulation of early B-lymphocyte differentiation. Immunological Reviews, 2000, 175, 94-95.	2.8	33
45	Wnt Signaling Regulates B Lymphocyte Proliferation through a LEF-1 Dependent Mechanism. Immunity, 2000, 13, 15-24.	6.6	394
46	Transcriptional regulation of early B-lymphocyte differentiation. , 2000, 175, 94.		1
47	Coordinate Regulation of B Cell Differentiation by the Transcription Factors EBF and E2A. Immunity, 1999, 11, 21-31.	6.6	293
48	EBF and E47 Collaborate to Induce Expression of the Endogenous Immunoglobulin Surrogate Light Chain Genes. Immunity, 1997, 7, 25-36.	6.6	247
49	Bacterial Metabolism Shapes the Host-Pathogen Interface. , 0, , 15-41.		7
50	Metabolism of the Gram-Positive Bacterial Pathogen <i>Listeria monocytogenes</i> . , 0, , 864-872.		3