Yunlong Zi

List of Publications by Year in Descending Order

Source: https://exaly.com/author-pdf/4853297/yunlong-zi-publications-by-year.pdf

Version: 2024-04-20

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

126
papers
9,744
citations
h-index
98
g-index

137
ext. papers
ext. citations
12.1
avg, IF
L-index

#	Paper	IF	Citations
126	Solvent-free adhesive ionic elastomer for multifunctional stretchable electronics. <i>Nano Energy</i> , 2022 , 91, 106611	17.1	7
125	Fluorinated PEEK and XLPE as Promising Insulation Candidates for the Propulsion System of All-electric Aircraft. <i>IEEE Transactions on Dielectrics and Electrical Insulation</i> , 2022 , 1-1	2.3	
124	A method for quantitatively separating the piezoelectric component from the as-received "Piezoelectric" signal <i>Nature Communications</i> , 2022 , 13, 1391	17.4	8
123	Tribophotonics: An emerging self-powered wireless solution toward smart city. <i>Nano Energy</i> , 2022 , 97, 107196	17.1	1
122	Underwater Self-Powered All-Optical Wireless Ultrasonic Sensing, Positioning and Communication with Ultrafast Response Time and Ultrahigh Sensitivity. <i>Advanced Optical Materials</i> , 2022 , 10, 2102091	8.1	4
121	Insulator Surface Charge Behaviors: From Hazards to Functionality. <i>IEEE Electrical Insulation Magazine</i> , 2022 , 38, 6-14	2.1	2
120	Multi-Mode Water-Tube-Based Triboelectric Nanogenerator Designed for Low-Frequency Energy Harvesting with Ultrahigh Volumetric Charge Density. <i>Advanced Energy Materials</i> , 2021 , 11, 2100038	21.8	34
119	Tribo-Induced Smart Reflector for Ultrasensitive Self-Powered Wireless Sensing of Air Flow. <i>ACS Applied Materials & District Materials</i>	9.5	4
118	Tribo-Induced Color Tuner toward Smart Lighting and Self-Powered Wireless Sensing. <i>Advanced Science</i> , 2021 , 8, 2004970	13.6	4
117	Recent progress of triboelectrification-induced electroluminescence: from fundaments to applications. <i>JPhys Materials</i> , 2021 , 4, 042001	4.2	1
116	Self-powered, ultrasensitive, and high-resolution visualized flexible pressure sensor based on color-tunable triboelectrification-induced electroluminescence. <i>Nano Energy</i> , 2021 , 79, 105431	17.1	29
115	A fully self-powered, ultra-stable cholesteric smart window triggered by instantaneous mechanical stimuli. <i>Nano Energy</i> , 2021 , 85, 105976	17.1	10
114	Tribo-charge enhanced hybrid air filter masks for efficient particulate matter capture with greatly extended service life. <i>Nano Energy</i> , 2021 , 85, 106015	17.1	11
113	Design of a broadband piezoelectric energy harvester with piecewise nonlinearity. <i>Smart Materials and Structures</i> , 2021 , 30, 085040	3.4	3
112	Direct ink writing of fluoropolymer/CNT-based superhydrophobic and corrosion-resistant electrodes for droplet energy harvesters and self-powered electronic skins. <i>Nano Energy</i> , 2021 , 86, 106	0 9 51	9
111	A paradigm shift fully self-powered long-distance wireless sensing solution enabled by discharge-induced displacement current. <i>Science Advances</i> , 2021 , 7, eabi6751	14.3	8
110	Achieving ultrahigh instantaneous power density of 10 MW/m by leveraging the opposite-charge-enhanced transistor-like triboelectric nanogenerator (OCT-TENG). <i>Nature Communications</i> , 2021 , 12, 5470	17.4	33

(2020-2021)

109	Boosting current output of triboelectric nanogenerator by two orders of magnitude via hindering interfacial charge recombination. <i>Nano Energy</i> , 2021 , 89, 106315	17.1	2	
108	Femtoamp and picoamp modes of electrospray and paper spray ionization. <i>International Journal of Mass Spectrometry</i> , 2021 , 469, 116696	1.9	2	
107	Complete Prevention of Contact Electrification by Molecular Engineering. <i>Matter</i> , 2021 , 4, 290-301	12.7	7	
106	Boosting the Output Performance of the Triboelectric Nanogenerator through the Nonlinear Oscillator. <i>ACS Applied Materials & Acs Applied & Acs </i>	9.5	9	
105	Fully Biodegradable Water Droplet Energy Harvester Based on Leaves of Living Plants. <i>ACS Applied Materials & Amp; Interfaces</i> , 2020 , 12, 56060-56067	9.5	23	
104	A coplanar-electrode direct-current triboelectric nanogenerator with facile fabrication and stable output. <i>EcoMat</i> , 2020 , 2, e12037	9.4	16	
103	Employing a MEMS plasma switch for conditioning high-voltage kinetic energy harvesters. <i>Nature Communications</i> , 2020 , 11, 3221	17.4	30	
102	Normally Transparent Tribo-Induced Smart Window. ACS Nano, 2020, 14, 3630-3639	16.7	39	
101	Inductor-Free Output Multiplier for Power Promotion and Management of Triboelectric Nanogenerators toward Self-Powered Systems. <i>ACS Applied Materials & Description</i> (12), 5892-	5 9 60	19	
100	Recent progress on flexible nanogenerators toward self-powered systems. <i>Informali</i> Materily, 2020 , 2, 318-340	23.1	43	
99	Multifunctional Self-Powered Switch toward Delay-Characteristic Sensors. <i>ACS Applied Materials & Amp; Interfaces</i> , 2020 , 12, 22873-22880	9.5	10	
98	Thin, Skin-Integrated, Stretchable Triboelectric Nanogenerators for Tactile Sensing. <i>Advanced Electronic Materials</i> , 2020 , 6, 1901174	6.4	32	
97	Robust Power Textile Based on Triboelectrification for Self-Powered Smart Textiles. <i>IEEE Open Journal of Nanotechnology</i> , 2020 , 1, 95-99	2.1	2	
96	Carbon Dot-Based Composite Films for Simultaneously Harvesting Raindrop Energy and Boosting Solar Energy Conversion Efficiency in Hybrid Cells. <i>ACS Nano</i> , 2020 , 14, 10359-10369	16.7	23	
95	Achieving Ultrahigh Output Energy Density of Triboelectric Nanogenerators in High-Pressure Gas Environment. <i>Advanced Science</i> , 2020 , 7, 2001757	13.6	23	
94	A metal-electrode-free, fully integrated, soft triboelectric sensor array for self-powered tactile sensing. <i>Microsystems and Nanoengineering</i> , 2020 , 6, 59	7.7	22	
93	Recent advances of triboelectric nanogenerator based applications in biomedical systems. <i>EcoMat</i> , 2020 , 2, e12049	9.4	17	
92	On the material-dependent charge transfer mechanism of the contact electrification. <i>Nano Energy</i> , 2020 , 78, 105343	17.1	12	

91	Self-powered electrowetting optical switch driven by a triboelectric nanogenerator for wireless sensing. <i>Nano Energy</i> , 2019 , 66, 104140	17.1	24
90	A universal standardized method for output capability assessment of nanogenerators. <i>Nature Communications</i> , 2019 , 10, 4428	17.4	53
89	Capturing Flow Energy from Ocean and Wind. <i>Energies</i> , 2019 , 12, 2184	3.1	27
88	Effects of Metal Work Function and Contact Potential Difference on Electron Thermionic Emission in Contact Electrification. <i>Advanced Functional Materials</i> , 2019 , 29, 1903142	15.6	50
87	Direct lift-off and the piezo-phototronic study of InGaN/GaN heterostructure membrane. <i>Nano Energy</i> , 2019 , 59, 545-552	17.1	20
86	Electrohydrodynamic Jet Printing Driven by a Triboelectric Nanogenerator. <i>Advanced Functional Materials</i> , 2019 , 29, 1901102	15.6	39
85	On the force and energy conversion in triboelectric nanogenerators. <i>Nano Energy</i> , 2019 , 59, 154-161	17.1	33
84	A universal method for quantitative analysis of triboelectric nanogenerators. <i>Journal of Materials Chemistry A</i> , 2019 , 7, 19485-19494	13	16
83	Actuation and sensor integrated self-powered cantilever system based on TENG technology. <i>Nano Energy</i> , 2019 , 64, 103920	17.1	40
82	Skin-Integrated Graphene-Embedded Lead Zirconate Titanate Rubber for Energy Harvesting and Mechanical Sensing. <i>Advanced Materials Technologies</i> , 2019 , 4, 1900744	6.8	34
81	On the Maximal Output Energy Density of Nanogenerators. ACS Nano, 2019, 13, 13257-13263	16.7	24
80	High-voltage applications of the triboelectric nanogenerator Dpportunities brought by the unique energy technology. <i>MRS Energy & Sustainability</i> , 2019 , 6, 1	2.2	12
79	A fully-packaged ship-shaped hybrid nanogenerator for blue energy harvesting toward seawater self-desalination and self-powered positioning. <i>Nano Energy</i> , 2019 , 57, 616-624	17.1	70
78	Standardization of triboelectric nanogenerators: Progress and perspectives. <i>Nano Energy</i> , 2019 , 56, 40	-5 5 7.1	30
77	A novel triboelectric nanogenerator based on electrospun polyvinylidene fluoride nanofibers for effective acoustic energy harvesting and self-powered multifunctional sensing. <i>Nano Energy</i> , 2019 , 56, 241-251	17.1	105
76	On the Electron-Transfer Mechanism in the Contact-Electrification Effect. <i>Advanced Materials</i> , 2018 , 30, e1706790	24	263
75	Concurrent Harvesting of Ambient Energy by Hybrid Nanogenerators for Wearable Self-Powered Systems and Active Remote Sensing. <i>ACS Applied Materials & District Materials</i> (2018), 10, 14708-14715	9.5	55
74	Field Emission of Electrons Powered by a Triboelectric Nanogenerator. <i>Advanced Functional Materials</i> , 2018 , 28, 1800610	15.6	32

(2017-2018)

73	Keystroke dynamics enabled authentication and identification using triboelectric nanogenerator array. <i>Materials Today</i> , 2018 , 21, 216-222	21.8	122
7 ²	High-Output Lead-Free Flexible Piezoelectric Generator Using Single-Crystalline GaN Thin Film. <i>ACS Applied Materials & Discourt & Discourt Materials & Discourt & Discou</i>	9.5	40
71	Self-powered wireless optical transmission of mechanical agitation signals. <i>Nano Energy</i> , 2018 , 47, 566	-5 77 .1	45
70	Toward self-powered photodetection enabled by triboelectric nanogenerators. <i>Journal of Materials Chemistry C</i> , 2018 , 6, 11893-11902	7.1	32
69	Raising the Working Temperature of a Triboelectric Nanogenerator by Quenching Down Electron Thermionic Emission in Contact-Electrification. <i>Advanced Materials</i> , 2018 , 30, e1803968	24	116
68	High Energy Storage Efficiency Triboelectric Nanogenerators with Unidirectional Switches and Passive Power Management Circuits. <i>Advanced Functional Materials</i> , 2018 , 28, 1805216	15.6	127
67	A Hierarchically Nanostructured Cellulose Fiber-Based Triboelectric Nanogenerator for Self-Powered Healthcare Products. <i>Advanced Functional Materials</i> , 2018 , 28, 1805540	15.6	104
66	Triboelectric microplasma powered by mechanical stimuli. <i>Nature Communications</i> , 2018 , 9, 3733	17.4	137
65	Triboelectric Nanogenerator (TENG) Mass Spectrometry of Falsified Antimalarials. <i>Rapid Communications in Mass Spectrometry</i> , 2018 , 32, 1585	2.2	9
64	A washable, stretchable, and self-powered human-machine interfacing Triboelectric nanogenerator for wireless communications and soft robotics pressure sensor arrays. <i>Extreme Mechanics Letters</i> , 2017 , 13, 25-35	3.9	61
63	Understanding Self-Catalyzed Epitaxial Growth of III-V Nanowires toward Controlled Synthesis. <i>Nano Letters</i> , 2017 , 17, 1167-1173	11.5	11
62	Sustainable Energy Source for Wearable Electronics Based on Multilayer Elastomeric Triboelectric Nanogenerators. <i>Advanced Energy Materials</i> , 2017 , 7, 1602832	21.8	104
61	Multifunctional TENG for Blue Energy Scavenging and Self-Powered Wind-Speed Sensor. <i>Advanced Energy Materials</i> , 2017 , 7, 1602397	21.8	196
60	Triboelectric nanogenerators for sensitive nano-coulomb molecular mass spectrometry. <i>Nature Nanotechnology</i> , 2017 , 12, 481-487	28.7	183
59	Ultralight Cut-Paper-Based Self-Charging Power Unit for Self-Powered Portable Electronic and Medical Systems. <i>ACS Nano</i> , 2017 , 11, 4475-4482	16.7	164
58	Auxetic Foam-Based Contact-Mode Triboelectric Nanogenerator with Highly Sensitive Self-Powered Strain Sensing Capabilities to Monitor Human Body Movement. <i>Advanced Functional Materials</i> , 2017 , 27, 1606695	15.6	110
57	Simultaneously Enhancing Light Emission and Suppressing Efficiency Droop in GaN Microwire-Based Ultraviolet Light-Emitting Diode by the Piezo-Phototronic Effect. <i>Nano Letters</i> , 2017 , 17, 3718-3724	11.5	44
56	Maximized Effective Energy Output of Contact-Separation-Triggered Triboelectric Nanogenerators as Limited by Air Breakdown. <i>Advanced Functional Materials</i> , 2017 , 27, 1700049	15.6	90

55	High efficient harvesting of underwater ultrasonic wave energy by triboelectric nanogenerator. <i>Nano Energy</i> , 2017 , 38, 101-108	17.1	102
54	Nanogenerators: An emerging technology towards nanoenergy. APL Materials, 2017, 5, 074103	5.7	121
53	Self-Powered Wireless Sensor Node Enabled by a Duck-Shaped Triboelectric Nanogenerator for Harvesting Water Wave Energy. <i>Advanced Energy Materials</i> , 2017 , 7, 1601705	21.8	139
52	A spring-based resonance coupling for hugely enhancing the performance of triboelectric nanogenerators for harvesting low-frequency vibration energy. <i>Nano Energy</i> , 2017 , 32, 287-293	17.1	124
51	A Highly Stretchable Fiber-Based Triboelectric Nanogenerator for Self-Powered Wearable Electronics. <i>Advanced Functional Materials</i> , 2017 , 27, 1604378	15.6	230
50	An inductor-free auto-power-management design built-in triboelectric nanogenerators. <i>Nano Energy</i> , 2017 , 31, 302-310	17.1	85
49	3D Orthogonal Woven Triboelectric Nanogenerator for Effective Biomechanical Energy Harvesting and as Self-Powered Active Motion Sensors. <i>Advanced Materials</i> , 2017 , 29, 1702648	24	225
48	An ultrathin paper-based self-powered system for portable electronics and wireless human-machine interaction. <i>Nano Energy</i> , 2017 , 39, 328-336	17.1	107
47	Piezo-Phototronic Effect on Selective Electron or Hole Transport through Depletion Region of Vis-NIR Broadband Photodiode. <i>Advanced Materials</i> , 2017 , 29, 1701412	24	62
46	Triboelectric Nanogenerator: Single-Electrode Mode. <i>Green Energy and Technology</i> , 2016 , 91-107	0.6	9
45	Triboelectric Nanogenerator: Lateral Sliding Mode. <i>Green Energy and Technology</i> , 2016 , 49-90	0.6	7
44	Harvesting Wind Energy. <i>Green Energy and Technology</i> , 2016 , 259-282	0.6	
43	Self-powered Sensing for Chemical and Environmental Detection. <i>Green Energy and Technology</i> , 2016 , 469-489	0.6	
42	Harvesting Large-Scale Blue Energy. <i>Green Energy and Technology</i> , 2016 , 283-306	0.6	2
41	Triboelectric Nanogenerators. <i>Green Energy and Technology</i> , 2016 ,	0.6	126
40	All-in-One Shape-Adaptive Self-Charging Power Package for Wearable Electronics. <i>ACS Nano</i> , 2016 , 10, 10580-10588	16.7	230
39	Self-powered textile for wearable electronics by hybridizing fiber-shaped nanogenerators, solar cells, and supercapacitors. <i>Science Advances</i> , 2016 , 2, e1600097	14.3	558
38	Effective energy storage from a triboelectric nanogenerator. <i>Nature Communications</i> , 2016 , 7, 10987	17.4	310

(2016-2016)

37	A highly shape-adaptive, stretchable design based on conductive liquid for energy harvesting and self-powered biomechanical monitoring. <i>Science Advances</i> , 2016 , 2, e1501624	14.3	221
36	Sustainably powering wearable electronics solely by biomechanical energy. <i>Nature Communications</i> , 2016 , 7, 12744	17.4	392
35	All-Plastic-Materials Based Self-Charging Power System Composed of Triboelectric Nanogenerators and Supercapacitors. <i>Advanced Functional Materials</i> , 2016 , 26, 1070-1076	15.6	152
34	Harvesting Broad Frequency Band Blue Energy by a Triboelectric-Electromagnetic Hybrid Nanogenerator. <i>ACS Nano</i> , 2016 , 10, 6526-34	16.7	184
33	Excluding Contact Electrification in Surface Potential Measurement Using Kelvin Probe Force Microscopy. <i>ACS Nano</i> , 2016 , 10, 2528-35	16.7	44
32	Molecular surface functionalization to enhance the power output of triboelectric nanogenerators. <i>Journal of Materials Chemistry A</i> , 2016 , 4, 3728-3734	13	177
31	Self-Powered Electrochemical Synthesis of Polypyrrole from the Pulsed Output of a Triboelectric Nanogenerator as a Sustainable Energy System. <i>Advanced Functional Materials</i> , 2016 , 26, 3542-3548	15.6	75
30	A Water-Proof Triboelectric E lectromagnetic Hybrid Generator for Energy Harvesting in Harsh Environments. <i>Advanced Energy Materials</i> , 2016 , 6, 1501593	21.8	193
29	Harvesting Low-Frequency (. <i>ACS Nano</i> , 2016 , 10, 4797-805	16.7	419
28	Triboelectrification. <i>Green Energy and Technology</i> , 2016 , 1-19	0.6	8
27	Hybrid Cell Composed of Triboelectric Nanogenerator. <i>Green Energy and Technology</i> , 2016 , 307-350	0.6	0
26	Applications in Self-powered Systems and Processes. <i>Green Energy and Technology</i> , 2016 , 351-398	0.6	3
25	Self-powered Sensing for Human-Machine Interface. <i>Green Energy and Technology</i> , 2016 , 401-429	0.6	1
24	Self-powered Sensing for Vibration and Biomedical Monitoring. <i>Green Energy and Technology</i> , 2016 , 43	1-4.54	2
23	Self-powered Sensing for Tracking Moving Objects. <i>Green Energy and Technology</i> , 2016 , 455-467	0.6	0
22	Triboelectric Nanogenerator: Vertical Contact-Separation Mode. <i>Green Energy and Technology</i> , 2016 , 23-47	0.6	25
21	Triboelectric Nanogenerator: Freestanding Triboelectric-Layer Mode. <i>Green Energy and Technology</i> , 2016 , 109-153	0.6	8
20	Theoretical Modeling of Triboelectric Nanogenerators. <i>Green Energy and Technology</i> , 2016 , 155-183	0.6	4

3.2

11

Figure-of-Merits for Quantifying Triboelectric Nanogenerators. Green Energy and Technology, 2016, 185-2664 19 Harvesting Body Motion Energy. Green Energy and Technology, 2016, 207-236 18 0.6 Harvesting Vibration Energy. Green Energy and Technology, 2016, 237-257 0.6 17 All-Elastomer-Based Triboelectric Nanogenerator as a Keyboard Cover To Harvest Typing Energy. 16.7 16 72 ACS Nano, 2016, 10, 7973-81 Figures-of-Merit for Rolling-Friction-Based Triboelectric Nanogenerators. Advanced Materials 6.8 15 24 Technologies, 2016, 1, 1600017 Networks of triboelectric nanogenerators for harvesting water wave energy: a potential approach 14 16.7 419 toward blue energy. ACS Nano, 2015, 9, 3324-31 Fabrication of Sub-25 nm Diameter GaSb Nanopillar Arrays by Nanoscale Self-Mask Effect. Nano 8 13 11.5 Letters, **2015**, 15, 4993-5000 Largely Improving the Robustness and Lifetime of Triboelectric Nanogenerators through 16.7 12 73 Automatic Transition between Contact and Noncontact Working States. ACS Nano, 2015, 9, 7479-87 Triboelectric-pyroelectric-piezoelectric hybrid cell for high-efficiency energy-harvesting and 11 24 331 self-powered sensing. Advanced Materials, 2015, 27, 2340-7 Stretchable-Rubber-Based Triboelectric Nanogenerator and Its Application as Self-Powered Body 10 15.6 261 Motion Sensors. Advanced Functional Materials, 2015, 25, 3688-3696 Standards and figure-of-merits for quantifying the performance of triboelectric nanogenerators. 9 17.4 470 Nature Communications, 2015, 6, 8376 A flexible, stretchable and shape-adaptive approach for versatile energy conversion and 24 199 self-powered biomedical monitoring. Advanced Materials, 2015, 27, 3817-24 A Flexible Fiber-Based Supercapacitor-Triboelectric-Nanogenerator Power System for Wearable 276 24 Electronics. Advanced Materials, 2015, 27, 4830-6 Current and Noise Properties of InAs Nanowire Transistors With Asymmetric Contacts Induced by 6 2.9 9 Gate Overlap. IEEE Transactions on Electron Devices, 2014, 61, 884-889 . IEEE Transactions on Electron Devices, 2013, 60, 2900-2905 5 2.9 19 Understanding self-aligned planar growth of InAs nanowires. Nano Letters, 2013, 13, 2786-91 11.5 41 Understanding the impact of Schottky barriers on the performance of narrow bandgap nanowire 11.5 47 field effect transistors. Nano Letters, 2012, 12, 5331-6

Synthesis of antimony-based nanowires using the simple vapor deposition method. ChemPhysChem,

2012, 13, 2585-8

A fully self-powered, natural-light-enabled fiber-optic vibration sensing solution. SusMat,

a

1