
Jan Sobus

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4853044/publications.pdf Version: 2024-02-01

IAN SORUS

#	Article	IF	CITATIONS
1	Probing polaron-induced exciton quenching in TADF based organic light-emitting diodes. Nature Communications, 2022, 13, 254.	12.8	42
2	Controlling triplet–triplet upconversion and singlet-triplet annihilation in organic light-emitting diodes for injection lasing. Communications Materials, 2022, 3, .	6.9	13
3	Organic Lightâ€Emitting Transistors: Advances and Perspectives. Advanced Functional Materials, 2020, 30, 1905282.	14.9	61
4	Deepâ€Red Lasing and Amplified Spontaneous Emission from Nature Inspired Bayâ€Annulated Indigo Derivatives. Advanced Optical Materials, 2020, 8, 1901350.	7.3	26
5	Solid cyclooctatetraene-based triplet quencher demonstrating excellent suppression of singlet–triplet annihilation in optical and electrical excitation. Nature Communications, 2020, 11, 5623.	12.8	31
6	Charge and exciton dynamics of OLEDs under high voltage nanosecond pulse: towards injection lasing. Nature Communications, 2020, 11, 4310.	12.8	31
7	Exciton–Exciton Annihilation in Thermally Activated Delayed Fluorescence Emitter. Advanced Functional Materials, 2020, 30, 2000580.	14.9	45
8	High EQE and High Brightness Solutionâ€Processed TADF Lightâ€Emitting Transistors and OLEDs. Advanced Optical Materials, 2020, 8, 2000554.	7.3	21
9	Organic Laser Dyes: Deepâ€Red Lasing and Amplified Spontaneous Emission from Nature Inspired Bayâ€Annulated Indigo Derivatives (Advanced Optical Materials 2/2020). Advanced Optical Materials, 2020, 8, 2070006.	7.3	0
10	Mobility Evaluation of [1]Benzothieno[3,2- <i>b</i>][1]benzothiophene Derivatives: Limitation and Impact on Charge Transport. ACS Applied Materials & Interfaces, 2019, 11, 3271-3279.	8.0	12
11	Low Amplified Spontaneous Emission Threshold and Efficient Electroluminescence from a Carbazole Derivatized Excited-State Intramolecular Proton Transfer Dye. ACS Photonics, 2018, 5, 4447-4455.	6.6	47
12	Polymer Light Emitting Devices: High-Speed OLEDs and Area-Emitting Light-Emitting Transistors from a Tetracyclic Lactim Semiconducting Polymer (Advanced Optical Materials 21/2018). Advanced Optical Materials, 2018, 6, 1870084.	7.3	0
13	High Performance p―and nâ€Type Lightâ€Emitting Fieldâ€Effect Transistors Employing Thermally Activated Delayed Fluorescence. Advanced Functional Materials, 2018, 28, 1800340.	14.9	31
14	Interface Engineering of Solution-Processed Hybrid Organohalide Perovskite Solar Cells. ACS Applied Materials & Interfaces, 2018, 10, 21681-21687.	8.0	89
15	Field-Effect Transistors: High Performance p- and n-Type Light-Emitting Field-Effect Transistors Employing Thermally Activated Delayed Fluorescence (Adv. Funct. Mater. 28/2018). Advanced Functional Materials, 2018, 28, 1870193.	14.9	1
16	High‧peed OLEDs and Areaâ€Emitting Lightâ€Emitting Transistors from a Tetracyclic Lactim Semiconducting Polymer. Advanced Optical Materials, 2018, 6, 1800768.	7.3	19
17	Effect of Solvent Variations in the Alcothermal Synthesis of Template-Free Mesoporous Titania for Dye-Sensitized Solar Cells Applications. PLoS ONE, 2016, 11, e0164670.	2.5	2
18	Factors Affecting the Performance of Champion Silylâ€Anchor Carbazole Dye Revealed in the Femtosecond to Second Studies of Complete ADEKAâ€1 Sensitized Solar Cells. Chemistry - A European Journal, 2016, 22, 15807-15818.	3.3	18

Jan Sobus

#	Article	IF	CITATIONS
19	Effect of different photoanode nanostructures on the initial charge separation and electron injection process in dye sensitized solar cells: A photophysical study with indoline dyes. Materials Chemistry and Physics, 2016, 170, 218-228.	4.0	10
20	Carbazole Dye‣ensitized Solar Cells Studied from Femtoseconds to Seconds—Effect of Additives in Cobalt―and Iodideâ€Based Electrolytes. ChemSusChem, 2015, 8, 3118-3128.	6.8	14
21	Transient states and the role of excited state self-quenching of indoline dyes in complete dye-sensitized solar cells. Dyes and Pigments, 2015, 113, 692-701.	3.7	30
22	Optimization of absorption bands of dye-sensitized and perovskite tandem solar cells based on loss-in-potential values. Physical Chemistry Chemical Physics, 2014, 16, 14116-14126.	2.8	14
23	Comparison of TiO ₂ and ZnO Solar Cells Sensitized with an Indoline Dye: Time-Resolved Laser Spectroscopy Studies of Partial Charge Separation Processes. Langmuir, 2014, 30, 2505-2512.	3.5	42