
Mariangela Hungria da Cunha

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4853037/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Meta-analysis of maize responses to Azospirillum brasilense inoculation in Brazil: Benefits and lessons to improve inoculation efficiency. Applied Soil Ecology, 2022, 170, 104276.	2.1	21
2	Strategies to deal with drought-stress in biological nitrogen fixation in soybean. Applied Soil Ecology, 2022, 172, 104352.	2.1	25
3	Microbiological quality analysis of inoculants based on Bradyrhizobium spp. and Azospirillum brasilense produced "on farm―reveals high contamination with non-target microorganisms. Brazilian Journal of Microbiology, 2022, 53, 267.	0.8	4
4	So many rhizobial partners, so little nitrogen fixed: The intriguing symbiotic promiscuity of common bean (Phaseolus vulgaris L.). Symbiosis, 2022, 86, 169-185.	1.2	11
5	Improving yield and health of legume crops via co-inoculation with rhizobia and Trichoderma: A global meta-analysis. Applied Soil Ecology, 2022, 176, 104493.	2.1	9
6	Genetic variation in symbiotic islands of natural variant strains of soybean Bradyrhizobium japonicum and Bradyrhizobium diazoefficiens differing in competitiveness and in the efficiency of nitrogen fixation. Microbial Genomics, 2022, 8, .	1.0	3
7	Revealing potential functions of hypothetical proteins induced by genistein in the symbiosis island of Bradyrhizobium japonicum commercial strain SEMIA 5079 (= CPAC 15). BMC Microbiology, 2022, 22, 122.	1.3	1
8	New Insights into the Taxonomy of Bacteria in the Genomic Era and a Case Study with Rhizobia. International Journal of Microbiology, 2022, 2022, 1-19.	0.9	12
9	Bradyrhizobium cenepequi sp. nov., Bradyrhizobium semiaridum sp. nov., Bradyrhizobium hereditatis sp. nov. and Bradyrhizobium australafricanum sp. nov., symbionts of different leguminous plants of Western Australia and South Africa and definition of three novel symbiovars. International Journal of Systematic and Evolutionary Microbiology. 2022. 72	0.8	22
10	Whole-Genome Sequence of Bioactive Compound-Producing Pseudomonas aeruginosa Strain LV. Microbiology Resource Announcements, 2021, 10, .	0.3	1
11	Biological N2 fixation and yield performance of soybean inoculated with Bradyrhizobium. Nutrient Cycling in Agroecosystems, 2021, 119, 323-336.	1.1	31
12	Seed and leaf-spray inoculation of PGPR in brachiarias (Urochloa spp.) as an economic and environmental opportunity to improve plant growth, forage yield and nutrient status. Plant and Soil, 2021, 463, 171-186.	1.8	23
13	Inoculation with plant growth-promoting bacteria and reduction of nitrogen fertilizer in herbage accumulation and nutritional value of Mavuno grass. International Journal for Innovation Education and Research, 2021, 9, 16-34.	0.0	1
14	Trichoderma asperellum Inoculation as a Tool for Attenuating Drought Stress in Sugarcane. Frontiers in Plant Science, 2021, 12, 645542.	1.7	37
15	The Challenge of Combining High Yields with Environmentally Friendly Bioproducts: A Review on the Compatibility of Pesticides with Microbial Inoculants. Agronomy, 2021, 11, 870.	1.3	16
16	Enrichment of organic compost with beneficial microorganisms and yield performance of corn and wheat. Revista Brasileira De Engenharia Agricola E Ambiental, 2021, 25, 332-339.	0.4	0
17	Combining microorganisms in inoculants is agronomically important but industrially challenging: case study of a composite inoculant containing Bradyrhizobium and Azospirillum for the soybean crop. AMB Express, 2021, 11, 71.	1.4	12
18	Twenty years of paradigm-breaking studies of taxonomy and symbiotic nitrogen fixation by beta-rhizobia, and indication of Brazil as a hotspot of Paraburkholderia diversity. Archives of Microbiology, 2021, 203, 4785-4803.	1.0	4

#	Article	IF	CITATIONS
19	Beneficial microbial species and metabolites alleviate soybean oxidative damage and increase grain yield during short dry spells. European Journal of Agronomy, 2021, 127, 126293.	1.9	19
20	Meta-analysis reveals benefits of co-inoculation of soybean with Azospirillum brasilense and Bradyrhizobium spp. in Brazil. Applied Soil Ecology, 2021, 163, 103913.	2.1	44
21	Diversity of maize (Zea mays L.) rhizobacteria with potential to promote plant growth. Brazilian Journal of Microbiology, 2021, 52, 1807-1823.	0.8	6
22	Molecular diversity of rhizobia-nodulating native Mimosa of Brazilian protected areas. Archives of Microbiology, 2021, 203, 5533-5545.	1.0	2
23	Outstanding impact of Azospirillum brasilense strains Ab-V5 and Ab-V6 on the Brazilian agriculture: Lessons that farmers are receptive to adopt new microbial inoculants. Revista Brasileira De Ciencia Do Solo, 2021, 45, .	0.5	47
24	Bradyrhizobium agreste sp. nov., Bradyrhizobium glycinis sp. nov. and Bradyrhizobium diversitatis sp. nov., isolated from a biodiversity hotspot of the genus Glycine in Western Australia. International Journal of Systematic and Evolutionary Microbiology, 2021, 71, .	0.8	20
25	Effects of growthâ€promoting bacteria on soybean root activity, plant development, and yield. Agronomy Journal, 2020, 112, 418-428.	0.9	59
26	Characterization of Bradyrhizobium strains indigenous to Western Australia and South Africa indicates remarkable genetic diversity and reveals putative new species. Systematic and Applied Microbiology, 2020, 43, 126053.	1.2	16
27	Hydrogen-uptake genes improve symbiotic efficiency in common beans (Phaseolus vulgaris L.). Antonie Van Leeuwenhoek, 2020, 113, 687-696.	0.7	7
28	Impact of pesticides in properties of Bradyrhizobium spp. and in the symbiotic performance with soybean. World Journal of Microbiology and Biotechnology, 2020, 36, 172.	1.7	15
29	Towards sustainable yield improvement: field inoculation of soybean with Bradyrhizobium and co-inoculation with Azospirillum in Mozambique. Archives of Microbiology, 2020, 202, 2579-2590.	1.0	10
30	Compatibility of <i>Azospirillum brasilense</i> with Pesticides Used for Treatment of Maize Seeds. International Journal of Microbiology, 2020, 2020, 1-8.	0.9	16
31	Seed preâ€inoculation with <i>Bradyrhizobium</i> as timeâ€optimizing option for largeâ€scale soybean cropping systems. Agronomy Journal, 2020, 112, 5222-5236.	0.9	23
32	Phylogeny of symbiotic genes reveals symbiovars within legume-nodulating Paraburkholderia species. Systematic and Applied Microbiology, 2020, 43, 126151.	1.2	12
33	Soybean tolerance to drought depends on the associated Bradyrhizobium strain. Brazilian Journal of Microbiology, 2020, 51, 1977-1986.	0.8	13
34	Bacterial Consortium and Microbial Metabolites Increase Grain Quality and Soybean Yield. Journal of Soil Science and Plant Nutrition, 2020, 20, 1923-1934.	1.7	29
35	Establishing reference values for soil microbial biomass-C in agroecosystems in the Atlantic Forest Biome in Southern Brazil. Ecological Indicators, 2020, 117, 106586.	2.6	7
36	Changes in root morphological traits in soybean co-inoculated with Bradyrhizobium spp. and Azospirillum brasilense or treated with A. brasilense exudates. Biology and Fertility of Soils, 2020, 56, 537-549.	2.3	54

#	Article	IF	CITATIONS
37	Polyphasic characterization of nitrogen-fixing and co-resident bacteria in nodules of Phaseolus lunatus inoculated with soils from PiauÃ-State, Northeast Brazil. Symbiosis, 2020, 80, 279-292.	1.2	9
38	Paraburkholderia atlantica sp. nov. and Paraburkholderia franconis sp. nov., two new nitrogen-fixing nodulating species isolated from Atlantic forest soils in Brazil. Archives of Microbiology, 2020, 202, 1369-1380.	1.0	31
39	Nodule microbiome from cowpea and lima bean grown in composted tannery sludge-treated soil. Applied Soil Ecology, 2020, 151, 103542.	2.1	21
40	Morphogenetic and structural characteristics of Urochloa species under inoculation with plant-growth-promoting bacteria and nitrogen fertilisation. Crop and Pasture Science, 2020, 71, 82.	0.7	16
41	Genomic Insights Into the Antifungal Activity and Plant Growth-Promoting Ability in Bacillus velezensis CMRP 4490. Frontiers in Microbiology, 2020, 11, 618415.	1.5	25
42	Genetic diversity of Agrobacterium species isolated from nodules of common bean and soybean in Brazil, Mexico, Ecuador and Mozambique, and description of the new species Agrobacterium fabacearum sp. nov International Journal of Systematic and Evolutionary Microbiology, 2020, 70, 4233-4244.	0.8	29
43	Bradyrhizobium archetypum sp. nov., Bradyrhizobium australiense sp. nov. and Bradyrhizobium murdochi sp. nov., isolated from nodules of legumes indigenous to Western Australia. International Journal of Systematic and Evolutionary Microbiology, 2020, 70, 4623-4636.	0.8	28
44	Method for Recovering and Counting Viable Cells from Maize Seeds Inoculated with Azospirillum brasilense. Journal of Pure and Applied Microbiology, 2020, 14, 195-204.	0.3	12
45	Yield, yield components and nutrients uptake in Zuri Guinea grass inoculated with plant growth-promoting bacteria. International Journal for Innovation Education and Research, 2020, 8, 103-124.	0.0	5
46	Biomass Yield, Nitrogen Content and Uptake, And Nutritive Value of Alfalfa Co-Inoculated with Plant-Growth Promoting Bacteria. International Journal for Innovation Education and Research, 2020, 8, 400-420.	0.0	2
47	Nitrogen in Shoots, Number of Tillers, Biomass Yield and Nutritive Value of Zuri Guinea Grass Inoculated with Plant-Growth Promoting Bacteria. International Journal for Innovation Education and Research, 2020, 8, 437-463.	0.0	6
48	Inoculação de bactérias promotoras do crescimento vegetal em Urochloa Ruziziensis. Research, Society and Development, 2020, 9, .	0.0	8
49	Forage Mass, Tillering, Nutritive Value and Root System of Ruzigrass Inoculated with Plant Growth Promoting Bacteria Associated with Doses of N-Fertilizer. International Journal for Innovation Education and Research, 2020, 8, 41-55.	0.0	1
50	Paraburkholderia guartelaensis sp. nov., a nitrogen-fixing species isolated from nodules of Mimosa gymnas in an ecotone considered as a hotspot of biodiversity in Brazil. Archives of Microbiology, 2019, 201, 1435-1446.	1.0	31
51	Biomass Yield, Nitrogen Accumulation and Nutritive Value of Mavuno Grass Inoculated with Plant Growth-promoting Bacteria. Communications in Soil Science and Plant Analysis, 2019, 50, 1931-1942.	0.6	17
52	Draft Genome Sequence of Bradyrhizobium elkanii Strain SEMIA 938, Used in Commercial Inoculants for Lupinus spp. in Brazil. Microbiology Resource Announcements, 2019, 8, .	0.3	2
53	Characterization of CMY-2-type beta-lactamase-producing Escherichia coli isolated from chicken carcasses and human infection in a city of South Brazil. BMC Microbiology, 2019, 19, 174.	1.3	27
54	The role of legumes in the sustainable intensification of African smallholder agriculture: Lessons learnt and challenges for the future. Agriculture, Ecosystems and Environment, 2019, 284, 106583.	2.5	118

#	Article	IF	CITATIONS
55	Nutrients Uptake in Shoots and Biomass Yields and Roots and Nutritive Value of Zuri Guinea Grass Inoculated with Plant Growth-promoting Bacteria. Communications in Soil Science and Plant Analysis, 2019, 50, 2927-2940.	0.6	5
56	Detection of OXA-58-producing Acinetobacter bereziniae in Brazil. Journal of Global Antimicrobial Resistance, 2019, 19, 53-55.	0.9	5
57	Phylogeography of the Bradyrhizobium spp. Associated With Peanut, Arachis hypogaea: Fellow Travelers or New Associations?. Frontiers in Microbiology, 2019, 10, 2041.	1.5	11
58	Identification of soybean Bradyrhizobium strains used in commercial inoculants in Brazil by MALDI-TOF mass spectrometry. Brazilian Journal of Microbiology, 2019, 50, 905-914.	0.8	4
59	The non-flavonoid inducible nodA3 and the flavonoid regulated nodA1 genes of Rhizobium tropici CIAT 899 guarantee nod factor production and nodulation of different host legumes. Plant and Soil, 2019, 440, 185-200.	1.8	9
60	Brazilian-adapted soybean Bradyrhizobium strains uncover IS elements with potential impact on biological nitrogen fixation. FEMS Microbiology Letters, 2019, 366, .	0.7	5
61	Productivity increase, reduction of nitrogen fertiliser use and drought-stress mitigation by inoculation of Marandu grass (Urochloa brizantha) with Azospirillum brasilense. Crop and Pasture Science, 2019, 70, 61.	0.7	52
62	Nodulation and biological nitrogen fixation (BNF) in forage peanut (Arachis pintoi) cv. Belmonte subjected to grazing regimes. Agriculture, Ecosystems and Environment, 2019, 278, 96-106.	2.5	17
63	Plants of Distinct Successional Stages Have Different Strategies for Nutrient Acquisition in an Atlantic Rain Forest Ecosystem. International Journal of Plant Sciences, 2019, 180, 186-199.	0.6	37
64	Draft Genome Sequence of Vancomycin-Resistant Enterococcus faecium UEL170 (Sequence Type 412), Isolated from a Patient with Urinary Tract Infection in a Tertiary Hospital in Southern Brazil. Microbiology Resource Announcements, 2019, 8, .	0.3	0
65	Draft Genome Sequence of <i>Agrobacterium deltaense</i> Strain CNPSo 3391, Isolated from a Soybean Nodule in Mozambique. Microbiology Resource Announcements, 2019, 8, .	0.3	5
66	Structural analysis of a novel N-carbamoyl-d-amino acid amidohydrolase from a Brazilian Bradyrhizobium japonicum strain: In silico insights by molecular modelling, docking and molecular dynamics. Journal of Molecular Graphics and Modelling, 2019, 86, 35-42.	1.3	6
67	Quorum sensing communication: <i>Bradyrhizobiumâ€Azospirillum</i> interaction via Nâ€acylâ€homoserine lactones in the promotion of soybean symbiosis. Journal of Basic Microbiology, 2019, 59, 38-53.	1.8	10
68	Revealing the roles of y4wF and tidC genes in Rhizobium tropici CIAT 899: biosynthesis of indolic compounds and impact on symbiotic properties. Archives of Microbiology, 2019, 201, 171-183.	1.0	13
69	Phylogenetic diversity of rhizobia nodulating native Mimosa gymnas grown in a South Brazilian ecotone. Molecular Biology Reports, 2019, 46, 529-540.	1.0	10
70	Proteomic analysis of Rhizobium freirei PRF 81T reveals the key role of central metabolic pathways in acid tolerance. Applied Soil Ecology, 2019, 135, 98-103.	2.1	12
71	Mesorhizobium atlanticum sp. nov., a new nitrogen-fixing species from soils of the Brazilian Atlantic Forest biome. International Journal of Systematic and Evolutionary Microbiology, 2019, 69, 1800-1806.	0.8	17
72	Bradyrhizobium niftali sp. nov., an effective nitrogen-fixing symbiont of partridge pea [Chamaecrista fasciculata (Michx.) Greene], a native caesalpinioid legume broadly distributed in the USA. International Journal of Systematic and Evolutionary Microbiology, 2019, 69, 3448-3459.	0.8	21

#	Article	IF	CITATIONS
73	Bradyrhizobium frederickii sp. nov., a nitrogen-fixing lineage isolated from nodules of the caesalpinioid species Chamaecrista fasciculata and characterized by tolerance to high temperature in vitro. International Journal of Systematic and Evolutionary Microbiology, 2019, 69, 3863-3877.	0.8	17
74	Microbial inoculants: reviewing the past, discussing the present and previewing an outstanding future for the use of beneficial bacteria in agriculture. AMB Express, 2019, 9, 205.	1.4	280
75	Lettuce Production under Reduced Levels of N-fertilizer in the Presence of Plant Growth-promoting Bacillus spp. Bacteria. Journal of Pure and Applied Microbiology, 2019, 13, 1941-1952.	0.3	6
76	Regulation of hsnT, nodF and nodE genes in Rhizobium tropici CIAT 899 and their roles in the synthesis of Nod factors and in the symbiosis. Microbiology (United Kingdom), 2019, 165, 990-1000.	0.7	4
77	Polyphasic characterization of rhizobia microsymbionts of common bean [Phaseolus vulgaris (L.)] isolated in Mato Grosso do Sul, a hotspot of Brazilian biodiversity. Symbiosis, 2018, 76, 163-176.	1.2	9
78	Outstanding impact of soil tillage on the abundance of soil hydrolases revealed by a metagenomic approach. Brazilian Journal of Microbiology, 2018, 49, 723-730.	0.8	17
79	Azospirillum: benefits that go far beyond biological nitrogen fixation. AMB Express, 2018, 8, 73.	1.4	281
80	Draft Genome Sequence of Pantoea ananatis Strain 1.38, a Bacterium Isolated from the Rhizosphere of Oryza sativa var. Puntal That Shows Biotechnological Potential as an Inoculant. Genome Announcements, 2018, 6, .	0.8	10
81	Feasibility of transference of inoculation-related technologies: A case study of evaluation of soybean rhizobial strains under the agro-climatic conditions of Brazil and Mozambique. Agriculture, Ecosystems and Environment, 2018, 261, 230-240.	2.5	28
82	Revealing strategies of quorum sensing in Azospirillum brasilense strains Ab-V5 and Ab-V6. Archives of Microbiology, 2018, 200, 47-56.	1.0	46
83	Identification of QTLs Associated with Biological Nitrogen Fixation Traits in Soybean Using a Genotypingâ€byâ€Sequencing Approach. Crop Science, 2018, 58, 2523-2532.	0.8	9
84	Can Additional Inoculations Increase Soybean Nodulation and Grain Yield?. Agronomy Journal, 2018, 110, 715-721.	0.9	51
85	Development of liquid inoculants for strains of Rhizobium tropici group using response surface methodology. African Journal of Biotechnology, 2018, 17, 411-421.	0.3	14
86	Draft Genome Sequences of Azospirillum brasilense Strains Ab-V5 and Ab-V6, Commercially Used in Inoculants for Grasses and Legumes in Brazil. Genome Announcements, 2018, 6, .	0.8	38
87	Agronomic Performance and Yield Stability of the RNA Interferenceâ€Based <i>Bean golden mosaic virus</i> â€Resistant Common Bean. Crop Science, 2018, 58, 579-591.	0.8	26
88	Complete Genome Sequence of Bacillus velezensis LABIM40, an Effective Antagonist of Fungal Plant Pathogens. Genome Announcements, 2018, 6, .	0.8	8
89	Co-inoculation of maize with Azospirillum brasilense and Rhizobium tropici as a strategy to mitigate salinity stress. Functional Plant Biology, 2018, 45, 328.	1.1	105
90	Antioxidant activity and induction of mechanisms of resistance to stresses related to the inoculation with Azospirillum brasilense. Archives of Microbiology, 2018, 200, 1191-1203.	1.0	34

#	Article	IF	CITATIONS
91	Genome sequence of Bradyrhizobium embrapense strain CNPSo 2833T, isolated from a root nodule of Desmodium heterocarpon. Brazilian Journal of Microbiology, 2017, 48, 9-10.	0.8	1
92	Mineral nitrogen impairs the biological nitrogen fixation in soybean of determinate and indeterminate growth types. Journal of Plant Nutrition, 2017, 40, 1690-1701.	0.9	39
93	Isolation, characterization and selection of indigenous Bradyrhizobium strains with outstanding symbiotic performance to increase soybean yields in Mozambique. Agriculture, Ecosystems and Environment, 2017, 246, 291-305.	2.5	72
94	Diversity and Importance of Diazotrophic Bacteria to Agricultural Sustainability in the Tropics. , 2017, , 269-292.		14
95	Phylogenies of symbiotic genes of Bradyrhizobium symbionts of legumes of economic and environmental importance in Brazil support the definition of the new symbiovars pachyrhizi and sojae. Systematic and Applied Microbiology, 2017, 40, 254-265.	1.2	45
96	Genetic diversity of symbiotic Paraburkholderia species isolated from nodules of Mimosa pudica (L.) and Phaseolus vulgaris (L.) grown in soils of the Brazilian Atlantic Forest (Mata Atlântica). FEMS Microbiology Ecology, 2017, 93, .	1.3	25
97	Inoculum Rate Effects on the Soybean Symbiosis in New or Old Fields under Tropical Conditions. Agronomy Journal, 2017, 109, 1106-1112.	0.9	28
98	Differential colonization by bioprospected rhizobial bacteria associated with common bean in different cropping systems. Canadian Journal of Microbiology, 2017, 63, 682-689.	0.8	3
99	Phytohormones and induction of plant-stress tolerance and defense genes by seed and foliar inoculation with Azospirillum brasilense cells and metabolites promote maize growth. AMB Express, 2017, 7, 153.	1.4	140
100	Genome Sequence of Rhizobium esperanzae Type Strain CNPSo 668, Isolated from Phaseolus vulgaris Nodules in Mexico. Genome Announcements, 2017, 5, .	0.8	12
101	Genome Sequence of <i>Pantoea</i> sp. Strain 1.19, Isolated from Rice Rhizosphere, with the Capacity To Promote Growth of Legumes and Nonlegumes. Genome Announcements, 2017, 5, .	0.8	9
102	The Rhizobium tropici CIAT 899 NodD2 protein regulates the production of Nod factors under salt stress in a flavonoid-independent manner. Scientific Reports, 2017, 7, 46712.	1.6	30
103	Genome Sequence of Pantoea ananatis Strain AMG 501, a Plant Growth-Promoting Bacterium Isolated from Rice Leaves Grown in Paddies of Southern Spain. Genome Announcements, 2017, 5, .	0.8	7
104	Low-carbon agriculture in South America to mitigate global climate change and advance food security. Environment International, 2017, 98, 102-112.	4.8	172
105	Indole-3-acetic acid production via the indole-3-pyruvate pathway by plant growth promoter Rhizobium tropici CIAT 899 is strongly inhibited by ammonium. Research in Microbiology, 2017, 168, 283-292.	1.0	35
106	Preinoculation of Soybean Seeds Treated with Agrichemicals up to 30 Days before Sowing: Technological Innovation for Large-Scale Agriculture. International Journal of Microbiology, 2017, 2017, 1-11.	0.9	14
107	Water restriction and physiological traits in soybean genotypes contrasting for nitrogen fixation drought tolerance. Scientia Agricola, 2017, 74, 110-117.	0.6	12
108	Genome Sequence of Bradyrhizobium mercantei Strain SEMIA 6399 T , Isolated from Nodules of Deguelia costata in Brazil. Genome Announcements, 2017, 5, .	0.8	1

#	Article	IF	CITATIONS
109	Bradyrhizobium mercantei sp. nov., a nitrogen-fixing symbiont isolated from nodules of Deguelia costata (syn. Lonchocarpus costatus). International Journal of Systematic and Evolutionary Microbiology, 2017, 67, 1827-1834.	0.8	32
110	Rhizobium esperanzae sp. nov., a N 2 -fixing root symbiont of Phaseolus vulgaris from Mexican soils. International Journal of Systematic and Evolutionary Microbiology, 2017, 67, 3937-3945.	0.8	41
111	Molecular characterization of carbapenem-resistant Klebsiella pneumoniae isolates from a university hospital in Brazil. Journal of Infection in Developing Countries, 2017, 11, 379-386.	0.5	6
112	Genome of Rhizobium leucaenae strains CFN 299T and CPAO 29.8: searching for genes related to a successful symbiotic performance under stressful conditions. BMC Genomics, 2016, 17, 534.	1.2	13
113	Strategies to promote early nodulation in soybean under drought. Field Crops Research, 2016, 196, 160-167.	2.3	57
114	Composition of endophytic fungal community associated with leaves of maize cultivated in south Brazilian field. Acta Microbiologica Et Immunologica Hungarica, 2016, 63, 449-466.	0.4	15
115	Genome Sequence of Bradyrhizobium stylosanthis Strain BR 446 ^T , a Nitrogen-Fixing Symbiont of the Legume Pasture <i>Stylosanthes guianensis</i> . Genome Announcements, 2016, 4, .	0.8	1
116	<i>Paraburkholderia nodosa</i> is the main N ₂ -fixing species trapped by promiscuous common bean (<i>Phaseolus vulgaris</i> L) in the Brazilian â€~Cerradão'. FEMS Microbiology Ecology, 2016, 92, fiw108.	1.3	35
117	Genome Sequence of Paraburkholderia nodosa Strain CNPSo 1341, a N 2 -Fixing Symbiont of the Promiscuous Legume Phaseolus vulgaris. Genome Announcements, 2016, 4, .	0.8	3
118	RNA-seq analysis of the Rhizobium tropici CIAT 899 transcriptome shows similarities in the activation patterns of symbiotic genes in the presence of apigenin and salt. BMC Genomics, 2016, 17, 198.	1.2	42
119	Shifts in taxonomic and functional microbial diversity with agriculture: How fragile is the Brazilian Cerrado?. BMC Microbiology, 2016, 16, 42.	1.3	78
120	Response of determinate and indeterminate soybean cultivars to basal and topdressing N fertilization compared to sole inoculation with Bradyrhizobium. Field Crops Research, 2016, 195, 21-27.	2.3	67
121	Draft Genome Sequence of Pseudomonas fluorescens Strain ET76, Isolated from Rice Rhizosphere in Northwestern Morocco. Genome Announcements, 2016, 4, .	0.8	4
122	Draft Genome Sequence of Pantoea ananatis Strain AMG521, a Rice Plant Growth-Promoting Bacterial Endophyte Isolated from the Guadalquivir Marshes in Southern Spain. Genome Announcements, 2016, 4, .	0.8	47
123	Accessing inoculation methods of maize and wheat with Azospirillum brasilense. AMB Express, 2016, 6, 3.	1.4	169
124	Impact of long-term cropping of glyphosate-resistant transgenic soybean [Glycine max (L.) Merr.] on soil microbiome. Transgenic Research, 2016, 25, 425-440.	1.3	44
125	Inoculation of Brachiaria spp. with the plant growth-promoting bacterium Azospirillum brasilense: An environment-friendly component in the reclamation of degraded pastures in the tropics. Agriculture, Ecosystems and Environment, 2016, 221, 125-131.	2.5	105
126	Bradyrhizobium stylosanthis sp. nov., comprising nitrogen-fixing symbionts isolated from nodules of the tropical forage legume Stylosanthes spp International Journal of Systematic and Evolutionary Microbiology, 2016, 66, 3078-3087.	0.8	38

#	Article	IF	CITATIONS
127	NrcR, a New Transcriptional Regulator of Rhizobium tropici CIAT 899 Involved in the Legume Root-Nodule Symbiosis. PLoS ONE, 2016, 11, e0154029.	1.1	17
128	Genome Sequence of Bradyrhizobium tropiciagri Strain CNPSo 1112 T , Isolated from a Root Nodule of Neonotonia wightii. Genome Announcements, 2015, 3, .	0.8	1
129	A database for the taxonomic and phylogenetic identification of the genus Bradyrhizobium using multilocus sequence analysis. BMC Genomics, 2015, 16, S10.	1.2	16
130	Opening the "black box―of nodD3, nodD4 and nodD5 genes of Rhizobium tropici strain CIAT 899. BMC Genomics, 2015, 16, 864.	1.2	37
131	Genome Sequence of Bradyrhizobium viridifuturi Strain SEMIA 690 ^T , a Nitrogen-Fixing Symbiont of <i>Centrosema pubescens</i> . Genome Announcements, 2015, 3, .	0.8	2
132	SOIL QUALITY IN RELATION TO FOREST CONVERSION TO PERENNIAL OR ANNUAL CROPPING IN SOUTHERN BRAZIL. Revista Brasileira De Ciencia Do Solo, 2015, 39, 1003-1014.	0.5	8
133	Soybean Production in the Americas. , 2015, , 393-400.		27
134	Maize growth promotion by inoculation with Azospirillum brasilense and metabolites of Rhizobium tropici enriched on lipo-chitooligosaccharides (LCOs). AMB Express, 2015, 5, 71.	1.4	59
135	Genome Sequence of Bradyrhizobium pachyrhizi Strain PAC48 T , a Nitrogen-Fixing Symbiont of Pachyrhizus erosus (L.) Urb. Genome Announcements, 2015, 3, .	0.8	3
136	Genome Sequence of Rhizobium ecuadorense Strain CNPSo 671 T , an Indigenous N 2 -Fixing Symbiont of the Ecuadorian Common Bean (Phaseolus vulgaris L.) Genetic Pool. Genome Announcements, 2015, 3, .	0.8	3
137	Regulatory nodD1 and nodD2 genes of Rhizobium tropici strain CIAT 899 and their roles in the early stages of molecular signaling and host-legume nodulation. BMC Genomics, 2015, 16, 251.	1.2	38
138	Composition and activity of endophytic bacterial communities in field-grown maize plants inoculated with Azospirillum brasilense. Annals of Microbiology, 2015, 65, 2187-2200.	1.1	26
139	Advances in Host Plant and Rhizobium Genomics to Enhance Symbiotic Nitrogen Fixation inÂGrain Legumes. Advances in Agronomy, 2015, , 1-116.	2.4	73
140	Metagenomic analysis reveals microbial functional redundancies and specificities in a soil under different tillage and crop-management regimes. Applied Soil Ecology, 2015, 86, 106-112.	2.1	76
141	Impact of the ahas transgene for herbicides resistance on biological nitrogen fixation and yield of soybean. Transgenic Research, 2015, 24, 155-165.	1.3	3
142	Rhizobium ecuadorense sp. nov., an indigenous N2-fixing symbiont of the Ecuadorian common bean (Phaseolus vulgaris L.) genetic pool. International Journal of Systematic and Evolutionary Microbiology, 2015, 65, 3162-3169.	0.8	61
143	Bradyrhizobium viridifuturi sp. nov., encompassing nitrogen-fixing symbionts of legumes used for green manure and environmental services. International Journal of Systematic and Evolutionary Microbiology, 2015, 65, 4441-4448.	0.8	43
144	Bradyrhizobium tropiciagri sp. nov. and Bradyrhizobium embrapense sp. nov., nitrogen-fixing symbionts of tropical forage legumes. International Journal of Systematic and Evolutionary Microbiology, 2015, 65, 4424-4433.	0.8	72

9

#	Article	IF	CITATIONS
145	Genetic structure and diversity of a soybean germplasm considering biological nitrogen fixation and protein content. Scientia Agricola, 2015, 72, 47-52.	0.6	10
146	Co-Inoculation of Soybean with <i>Bradyrhizobium</i> and <i>Azospirillum</i> Promotes Early Nodulation. American Journal of Plant Sciences, 2015, 06, 1641-1649.	0.3	67
147	Soybean Seed Co-Inoculation with <i>Bradyrhizobium</i> spp. and <i>Azospirillum brasilense</i> : A New Biotechnological Tool to Improve Yield and Sustainability. American Journal of Plant Sciences, 2015, 06, 811-817.	0.3	129
148	Plant densities and modulation of symbiotic nitrogen fixation in soybean. Scientia Agricola, 2014, 71, 181-187.	0.6	36
149	Feasibility of Lowering Soybean Planting Density without Compromising Nitrogen Fixation and Yield. Agronomy Journal, 2014, 106, 2118-2124.	0.9	33
150	Microbial diversity in an Oxisol under no-tillage and conventional tillage in southern Brazil. Revista Ciencia Agronomica, 2014, 45, 863-870.	0.1	9
151	Proteomic analysis of free-living Bradyrhizobium diazoefficiens: highlighting potential determinants of a successful symbiosis. BMC Genomics, 2014, 15, 643.	1.2	18
152	Effects of the glyphosate-resistance gene and herbicides on soybean: Field trials monitoring biological nitrogen fixation and yield. Field Crops Research, 2014, 158, 43-54.	2.3	27
153	Brazilian Microbiome Project: Revealing the Unexplored Microbial Diversity—Challenges and Prospects. Microbial Ecology, 2014, 67, 237-241.	1.4	119
154	Comparative genomics of Bradyrhizobium japonicum CPAC 15 and Bradyrhizobium diazoefficiens CPAC 7: elite model strains for understanding symbiotic performance with soybean. BMC Genomics, 2014, 15, 420.	1.2	71
155	The complete genome of Burkholderia phenoliruptrix strain BR3459a, a symbiont of Mimosa flocculosa: highlighting the coexistence of symbiotic and pathogenic genes. BMC Genomics, 2014, 15, 535.	1.2	29
156	Effects of the glyphosate-resistance gene and of herbicides applied to the soybean crop on soil microbial biomass and enzymes. Field Crops Research, 2014, 162, 20-29.	2.3	71
157	Rhizobium paranaense sp. nov., an effective N2-fixing symbiont of common bean (Phaseolus vulgaris L.) with broad geographical distribution in Brazil. International Journal of Systematic and Evolutionary Microbiology, 2014, 64, 3222-3229.	0.8	58
158	Regulation of N2 fixation and NO3â^'/NH4+ assimilation in nodulated and N-fertilized Phaseolus vulgaris L. exposed to high temperature stress. Environmental and Experimental Botany, 2014, 98, 32-39.	2.0	77
159	Identification and characterization of endophytic bacteria from corn (Zea mays L.) roots with biotechnological potential in agriculture. AMB Express, 2014, 4, 26.	1.4	118
160	Soil structure and its influence on microbial biomass in different soil and crop management systems. Soil and Tillage Research, 2014, 142, 42-53.	2.6	74
161	Prediction of potential novel microRNAs in soybean when in symbiosis. Genetics and Molecular Research, 2014, 13, 8519-8529.	0.3	6
162	Gas Exchanges and Biological Nitrogen Fixation in Soybean under Water Restriction. American Journal of Plant Sciences, 2014, 05, 4011-4017.	0.3	10

#	Article	IF	CITATIONS
163	Biotechnological potential of rhizobial metabolites to enhance the performance of Bradyrhizobium spp. and Azospirillum brasilense inoculants with soybean and maize. AMB Express, 2013, 3, 21.	1.4	59
164	Colonization of Madagascar periwinkle (Catharanthus roseus), by endophytes encoding gfp marker. Archives of Microbiology, 2013, 195, 483-489.	1.0	9
165	Morphological and genetic characterization of endophytic bacteria isolated from roots of different maize genotypes. Microbial Ecology, 2013, 65, 154-160.	1.4	75
166	Soil metagenomics reveals differences under conventional and no-tillage with crop rotation or succession. Applied Soil Ecology, 2013, 72, 49-61.	2.1	124
167	Mapping of QTLs associated with biological nitrogen fixation traits in soybean. Hereditas, 2013, 150, 17-25.	0.5	45
168	Polyphasic evidence supporting the reclassification of Bradyrhizobium japonicum group Ia strains as Bradyrhizobium diazoefficiens sp. nov International Journal of Systematic and Evolutionary Microbiology, 2013, 63, 3342-3351.	0.8	256
169	Co-inoculation of soybeans and common beans with rhizobia and azospirilla: strategies to improve sustainability. Biology and Fertility of Soils, 2013, 49, 791-801.	2.3	255
170	Dinitrogen-Fixing Prokaryotes. , 2013, , 427-451.		43
171	Novel Rhizobium lineages isolated from root nodules of the common bean (Phaseolus vulgaris L.) in Andean and Mesoamerican areas. Research in Microbiology, 2013, 164, 740-748.	1.0	78
172	Transcriptional analysis of genes involved in nodulation in soybean roots inoculated with Bradyrhizobium japonicumstrain CPAC 15. BMC Genomics, 2013, 14, 153.	1.2	23
173	Impact of the ahas transgene and of herbicides associated with the soybean crop on soil microbial communities. Transgenic Research, 2013, 22, 877-892.	1.3	46
174	Rhizobium freirei sp. nov., a symbiont of Phaseolus vulgaris that is very effective at fixing nitrogen. International Journal of Systematic and Evolutionary Microbiology, 2013, 63, 4167-4173.	0.8	91
175	Fast induction of biosynthetic polysaccharide genes lpxA, lpxE, and rkpl of Rhizobium sp. strain PRF 81 by common bean seed exudates is indicative of a key role in symbiosis. Functional and Integrative Genomics, 2013, 13, 275-283.	1.4	7
176	The Genome of Anopheles darlingi , the main neotropical malaria vector. Nucleic Acids Research, 2013, 41, 7387-7400.	6.5	102
177	Proteomic Analysis of Soybean [Glycine max (L.) Merrill] Roots Inoculated with Bradyrhizobium japonicum Strain CPAC 15. Proteomics Insights, 2013, 6, PRI.S13288.	2.0	5
178	Dinâmica de rizóbios em solo do cerrado de Roraima durante o perÃodo de estiagem. Acta Amazonica, 2013, 43, 153-160.	0.3	12
179	Complete Genome Sequence of Burkholderia phenoliruptrix BR3459a (CLA1), a Heat-Tolerant, Nitrogen-Fixing Symbiont of Mimosa flocculosa. Journal of Bacteriology, 2012, 194, 6675-6676.	1.0	26
180	Genome Sequences of Burkholderia sp. Strains CCGE1002 and H160, Isolated from Legume Nodules in Mexico and Brazil. Journal of Bacteriology, 2012, 194, 6927-6927.	1.0	36

#	Article	IF	CITATIONS
181	Reclassification of Rhizobium tropici type A strains as Rhizobium leucaenae sp. nov International Journal of Systematic and Evolutionary Microbiology, 2012, 62, 1179-1184.	0.8	107
182	Genomic basis of broad host range and environmental adaptability of Rhizobium tropici CIAT 899 and Rhizobium sp. PRF 81 which are used in inoculants for common bean (Phaseolus vulgaris L.). BMC Genomics, 2012, 13, 735.	1.2	118
183	Proteomic profiling of Rhizobium tropici PRF 81: identification of conserved and specific responses to heat stress. BMC Microbiology, 2012, 12, 84.	1.3	32
184	The Genetics of Symbiotic Nitrogen Fixation: Comparative Genomics of 14 Rhizobia Strains by Resolution of Protein Clusters. Genes, 2012, 3, 138-166.	1.0	94
185	Multilocus sequence analysis (MLSA) of Bradyrhizobium strains: revealing high diversity of tropical diazotrophic symbiotic bacteria. Brazilian Journal of Microbiology, 2012, 43, 698-710.	0.8	63
186	A simple, economical and reproducible protein extraction protocol for proteomics studies of soybean roots. Genetics and Molecular Biology, 2012, 35, 348-352.	0.6	26
187	Caracterização da região espaçadora 16-23S rDNA para diferenciação de estirpes de rizóbios utilizadas na produção de inoculantes comerciais no Brasil. Ciencia Rural, 2012, 42, 1423-1429.	0.3	0
188	Twoâ€dimensional proteome reference map of <i>Rhizobium tropici</i> PRF 81 reveals several symbiotic determinants and strong resemblance with agrobacteria. Proteomics, 2012, 12, 859-863.	1.3	12
189	Genetic variability in Bradyrhizobium japonicum strains nodulating soybean [Glycine max (L.) Merrill]. World Journal of Microbiology and Biotechnology, 2012, 28, 1831-1835.	1.7	21
190	Effects of sugarcane harvesting with burning on the chemical and microbiological properties of the soil. Agriculture, Ecosystems and Environment, 2012, 155, 1-6.	2.5	69
191	Photosynthetic adaptation of soybean due to varying effectiveness of N2 fixation by two distinct Bradyrhizobium japonicum strains. Environmental and Experimental Botany, 2012, 76, 1-6.	2.0	48
192	Proteomics reveals differential expression of proteins related to a variety of metabolic pathways by genistein-induced Bradyrhizobium japonicum strains. Journal of Proteomics, 2012, 75, 1211-1219.	1.2	29
193	Polyphasic approach for the characterization of rhizobial symbionts effective in fixing N2 with common bean (Phaseolus vulgaris L.). Applied Microbiology and Biotechnology, 2012, 93, 2035-2049.	1.7	31
194	Nodulation Capacity of Argentinean Soybean (<i>Glycine max</i> L. Merr) Cultivars Inoculated with Commercial Strains of <i>Bradyrhizobium japonicum</i> . American Journal of Plant Sciences, 2012, 03, 130-140.	0.3	9
195	Biblioteca subtrativa de raÃzes de soja em resposta à inoculação com Bradyrhizobium japonicum. BBR - Biochemistry and Biotechnology Reports, 2012, 1, 3-8.	0.0	1
196	Identificação de espécies de Discolobium do Pantanal de Mato Grosso pelo uso de marcadores microssatélites (SSRs). Semina:Ciencias Agrarias, 2012, 33, .	0.1	0
197	Limited vegetative compatibility as a cause of somatic recombination in Trichoderma pseudokoningii. Brazilian Journal of Microbiology, 2011, 42, 1625-1637.	0.8	3
198	Phylogeny of nodulation and nitrogen-fixation genes in Bradyrhizobium: supporting evidence for the the theory of monophyletic origin, and spread and maintenance by both horizontal and vertical transfer. International Journal of Systematic and Evolutionary Microbiology, 2011, 61, 3052-3067.	0.8	96

#	Article	IF	CITATIONS
199	Quantifying effects of different agricultural land uses on soil microbial biomass and activity in Brazilian biomes: inferences to improve soil quality. Plant and Soil, 2011, 338, 467-481.	1.8	70
200	Genetic diversity of rhizobia in a Brazilian oxisol nodulating Mesoamerican and Andean genotypes of common bean (Phaseolus vulgaris L.). World Journal of Microbiology and Biotechnology, 2011, 27, 643-650.	1.7	14
201	Genome of Herbaspirillum seropedicae Strain SmR1, a Specialized Diazotrophic Endophyte of Tropical Grasses. PLoS Genetics, 2011, 7, e1002064.	1.5	188
202	Variabilidade genética de isolados de Beauveria spp. e virulência ao cascudinho Alphitobius diaperinus Panzer (Coleoptera: Tenebrionidae). Semina:Ciencias Agrarias, 2011, 32, 147.	0.1	3
203	The nodC, nodG, and glgX genes of Rhizobium tropici strain PRF 81. Functional and Integrative Genomics, 2010, 10, 425-431.	1.4	9
204	Genetic diversity of elite rhizobial strains of subtropical and tropical legumes based on the 16S rRNA and gInII genes. World Journal of Microbiology and Biotechnology, 2010, 26, 1291-1302.	1.7	18
205	Inoculation with selected strains of Azospirillum brasilense and A. lipoferum improves yields of maize and wheat in Brazil. Plant and Soil, 2010, 331, 413-425.	1.8	436
206	Three decades of soil microbial biomass studies in Brazilian ecosystems: Lessons learned about soil quality and indications for improving sustainability. Soil Biology and Biochemistry, 2010, 42, 1-13.	4.2	318
207	Responses of legumes to rhizobia and arbuscular mycorrhizal fungi: A meta-analysis of potential photosynthate limitation of symbioses. Soil Biology and Biochemistry, 2010, 42, 125-127.	4.2	106
208	Microbial biomass and activity at various soil depths in a Brazilian oxisol after two decades of no-tillage and conventional tillage. Soil Biology and Biochemistry, 2010, 42, 2174-2181.	4.2	115
209	Genomic and evolutionary comparisons of diazotrophic and pathogenic bacteria of the order Rhizobiales. BMC Microbiology, 2010, 10, 37.	1.3	100
210	Towards a twoâ€dimensional proteomic reference map of <i>Bradyrhizobium japonicum</i> CPAC 15: Spotlighting "hypothetical proteins― Proteomics, 2010, 10, 3176-3189.	1.3	18
211	Differences in photosynthetic behaviour and leaf senescence of soybean (Glycine max [L.] Merrill) dependent on N2 fixation or nitrate supply. Plant Biology, 2010, 12, 60-69.	1.8	92
212	In-furrow inoculation of soybean as alternative to fungicide and micronutrient seed treatment. Revista Brasileira De Ciencia Do Solo, 2010, 34, 1103-1112.	0.5	23
213	Eficácia da inoculação de Bradyrhizobium em pré-semeadura da soja. Pesquisa Agropecuaria Brasileira, 2010, 45, 335-337.	0.9	19
214	Symbiotic Nitrogen Fixation in Tropical Food Grain Legumes: Current Status. , 2010, , 427-472.		11
215	Microbial biomass under various soil- and crop-management systems in short- and long-term experiments in Brazil. Field Crops Research, 2010, 119, 20-26.	2.3	60
216	Inoculação da soja com Bradyrhizobium no sulco de semeadura alternativamente à inoculação de sementes. Revista Brasileira De Ciencia Do Solo, 2010, 34, 1875-1881.	0.5	15

#	Article	IF	CITATIONS
217	Influence of fungicide seed treatment on soybean nodulation and grain yield. Revista Brasileira De Ciencia Do Solo, 2009, 33, 917-923.	0.5	39
218	Genetic diversity of indigenous common bean (Phaseolus vulgaris L.) rhizobia from the state of Minas Gerais, Brazil. Brazilian Journal of Microbiology, 2009, 40, 852-856.	0.8	13
219	Are the rates of photosynthesis stimulated by the carbon sink strength of rhizobial and arbuscular mycorrhizal symbioses?. Soil Biology and Biochemistry, 2009, 41, 1233-1244.	4.2	400
220	Relationship between total nodulation and nodulation at the root crown of peanut, soybean and common bean plants. Soil Biology and Biochemistry, 2009, 41, 1760-1763.	4.2	42
221	Novel genes related to nodulation, secretion systems, and surface structures revealed by a genome draft of Rhizobium tropici strain PRF 81. Functional and Integrative Genomics, 2009, 9, 263-270.	1.4	15
222	Rep-PCR of tropical rhizobia for strain fingerprinting, biodiversity appraisal and as a taxonomic and phylogenetic tool. Symbiosis, 2009, 48, 120-130.	1.2	47
223	Nitrogen fixation with the soybean crop in Brazil: Compatibility between seed treatment with fungicides and bradyrhizobial inoculants. Symbiosis, 2009, 48, 154-163.	1.2	78
224	Genetic differences between Bradyrhizobium japonicum variant strains contrasting in N2-fixation efficiency revealed by representational difference analysis. Archives of Microbiology, 2009, 191, 113-122.	1.0	17
225	rep-PCR fingerprinting and taxonomy based on the sequencing of the 16S rRNA gene of 54 elite commercial rhizobial strains. Applied Microbiology and Biotechnology, 2009, 83, 897-908.	1.7	51
226	Multidimensional cluster stability analysis from a Brazilian Bradyrhizobium sp. RFLP/PCR data set. Journal of Computational and Applied Mathematics, 2009, 227, 308-319.	1.1	3
227	Molybdenum-enriched soybean seeds enhance N accumulation, seed yield, and seed protein content in Brazil. Field Crops Research, 2009, 110, 219-224.	2.3	69
228	Multilocus sequence analysis of Brazilian Rhizobium microsymbionts of common bean (Phaseolus) Tj ETQq0 0 0	rgBT/Ovei	rloc္ငန္ 10 Tf 50
229	Soil microbial activity and crop sustainability in a long-term experiment with three soil-tillage and two crop-rotation systems. Applied Soil Ecology, 2009, 42, 288-296.	2.1	165
230	Phylogeny and taxonomy of a diverse collection of Bradyrhizobium strains based on multilocus sequence analysis of the 16S rRNA gene, ITS region and gInII, recA, atpD and dnaK genes. International Journal of Systematic and Evolutionary Microbiology, 2009, 59, 2934-2950.	0.8	154
231	Expressão dos genes nodC, nodW e nopP em Bradyrhizobium japonicum estirpe CPAC 15 avaliada por RT-qPCR. Pesquisa Agropecuaria Brasileira, 2009, 44, 1491-1498.	0.9	5
232	Genetic diversity of indigenous common bean (Phaseolus vulgaris L.) rhizobia from the state of Minas Gerais, Brazil. Brazilian Journal of Microbiology, 2009, 40, 852-6.	0.8	5
233	Diversity of endophytic enterobacteria associated with different host plants. Journal of Microbiology, 2008, 46, 373-379.	1.3	42
234	Diversity in antifungal activity of strains of Chromobacterium violaceum from the Brazilian Amazon. Journal of Industrial Microbiology and Biotechnology, 2008, 35, 783-790.	1.4	22

#	Article	IF	CITATIONS
235	Genomic panorama of Bradyrhizobium japonicum CPAC 15, a commercial inoculant strain largely established in Brazilian soils and belonging to the same serogroup as USDA 123. Soil Biology and Biochemistry, 2008, 40, 2743-2753.	4.2	17
236	Biological Nitrogen Fixation with the Soybean and Common Bean Crops in the Tropics. Current Plant Science and Biotechnology in Agriculture, 2008, , 33-34.	0.0	0
237	Comparação entre os métodos de fumigação-extração e fumigação-incubação para determinaç, carbono da biomassa microbiana em um Latossolo. Revista Brasileira De Ciencia Do Solo, 2008, 32, 1911-1919.	ão do 0.5	3
238	Inoculação de Bradyrhizobium em soja por pulverização em cobertura. Pesquisa Agropecuaria Brasileira, 2008, 43, 541-544.	0.9	14
239	Avaliação qualitativa e quantitativa da microbiota do solo e da fixação biológica do nitrogênio pela soja. Pesquisa Agropecuaria Brasileira, 2008, 43, 71-82.	0.9	17
240	Adubação nitrogenada suplementar tardia em soja cultivada em latossolos do Cerrado. Pesquisa Agropecuaria Brasileira, 2008, 43, 1053-1060.	0.9	29
241	Avaliação da biodiversidade de rizóbios simbiontes do feijoeiro (Phaseolus vulgaris L.) em Santa Catarina. Revista Brasileira De Ciencia Do Solo, 2008, 32, 1107-1120.	0.5	21
242	Conjunto mÃnimo de parâmetros para avaliação da microbiota do solo e da fixação biológica do nitrogênio pela soja. Pesquisa Agropecuaria Brasileira, 2008, 43, 83-91.	0.9	29
243	Evidence of Horizontal Transfer of Symbiotic Genes from a Bradyrhizobium japonicum Inoculant Strain to Indigenous Diazotrophs Sinorhizobium (Ensifer) fredii and Bradyrhizobium elkanii in a Brazilian Savannah Soil. Applied and Environmental Microbiology, 2007, 73, 2635-2643.	1.4	176
244	ABC transporters in Mycoplasma hyopneumoniae and Mycoplasma synoviae: insights into evolution and pathogenicity. Genetics and Molecular Biology, 2007, 30, 202-211.	0.6	20
245	Variações qualitativas e quantitativas na microbiota do solo e na fixação biológica do nitrogênio sob diferentes manejos com soja. Revista Brasileira De Ciencia Do Solo, 2007, 31, 1397-1412.	0.5	23
246	Microbiological parameters as indicators of soil quality under various soil management and crop rotation systems in southern Brazil. Soil and Tillage Research, 2007, 92, 18-29.	2.6	159
247	New insights into the origins and evolution of rhizobia that nodulate common bean (Phaseolus) Tj ETQq1 1 0.784	314 rgBT 4.2	/Qverlock 10 40
248	Polyphasic characterization of Brazilian Rhizobium tropici strains effective in fixing N2 with common bean (Phaseolus vulgaris L.). Soil Biology and Biochemistry, 2007, 39, 1851-1864.	4.2	52
249	Variability in Bradyrhizobium japonicum and B. elkanii Seven Years after Introduction of both the Exotic Microsymbiont and the Soybean Host in a Cerrados Soil. Microbial Ecology, 2007, 53, 270-284.	1.4	80
250	Soybean [Glycine max (L.) Merrill] rhizobial diversity in Brazilian oxisols under various soil, cropping, and inoculation managements. Biology and Fertility of Soils, 2007, 43, 665-674.	2.3	58
251	Nitrogen nutrition of soybean in Brazil: Contributions of biological N ₂ fixation and N fertilizer to grain yield. Canadian Journal of Plant Science, 2006, 86, 927-939.	0.3	185
252	Genetic diversity of rhizobia associated with common bean (Phaseolus vulgaris L.) grown under no-tillage and conventional systems in Southern Brazil. Applied Soil Ecology, 2006, 32, 210-220.	2.1	99

#	Article	IF	CITATIONS
253	Identification of quantitative trait loci controlling nodulation and shoot mass in progenies from two Brazilian soybean cultivars. Field Crops Research, 2006, 95, 355-366.	2.3	41
254	Identificação de QTL associados à simbiose entre Bradyrhizobium japonicum, B. elkanii e soja. Pesquisa Agropecuaria Brasileira, 2006, 41, 67-75.	0.9	15
255	Differences in common bean rhizobial populations associated with soil tillage management in southern Brazil. Soil and Tillage Research, 2006, 87, 205-217.	2.6	35
256	Promising indicators for assessment of agroecosystems alteration among natural, reforested and agricultural land use in southern Brazil. Agriculture, Ecosystems and Environment, 2006, 115, 237-247.	2.5	80
257	High diversity of diazotrophic bacteria associated with the carnivorous plant Drosera villosa var. villosa growing in oligotrophic habitats in Brazil. Plant and Soil, 2006, 287, 199-207.	1.8	42
258	Genetic diversity of indigenous tropical fast-growing rhizobia isolated from soybean nodules. Plant and Soil, 2006, 288, 343-356.	1.8	51
259	Sampling effects on the assessment of genetic diversity of rhizobia associated with soybean and common bean. Soil Biology and Biochemistry, 2006, 38, 1298-1307.	4.2	59
260	Molecular phylogeny based on the 16S rRNA gene of elite rhizobial strains used in Brazilian commercial inoculants. Systematic and Applied Microbiology, 2006, 29, 315-332.	1.2	129
261	RFLP analysis of the rRNA operon of a Brazilian collection of bradyrhizobial strains from 33 legume species. International Journal of Systematic and Evolutionary Microbiology, 2006, 56, 217-229.	0.8	63
262	Genetic characterization of Chromobacterium isolates from black water environments in the Brazilian Amazon. Letters in Applied Microbiology, 2005, 41, 17-23.	1.0	33
263	Phytohormones and Antibiotics Produced by Bacillus subtilis and their Effects on Seed Pathogenic Fungi and on Soybean Root Development. World Journal of Microbiology and Biotechnology, 2005, 21, 1639-1645.	1.7	112
264	The Importance of Nitrogen Fixation to Soybean Cropping in South America. , 2005, , 25-42.		56
265	Swine and Poultry Pathogens: the Complete Genome Sequences of Two Strains of Mycoplasma hyopneumoniae and a Strain of Mycoplasma synoviae. Journal of Bacteriology, 2005, 187, 5568-5577.	1.0	289
266	Inoculant Preparation, Production and Application. , 2005, , 223-253.		45
267	Breeding for Better Nitrogen Fixation in Grain Legumes: Where do the Rhizobia Fit In?. Crop Management, 2004, 3, 1-6.	0.3	29
268	Genetic diversity of indigenous common bean (Phaseolus vulgaris) rhizobia in two Brazilian ecosystems. Soil Biology and Biochemistry, 2004, 36, 1389-1398.	4.2	83
269	Establishment of Bradyrhizobium japonicum and B. elkanii strains in a Brazilian Cerrado oxisol. Biology and Fertility of Soils, 2004, 40, 28-35.	2.3	46
270	Genetic diversity of indigenous common bean (Phaseolus vulgaris) rhizobia in two Brazilian ecosystems. Soil Biology and Biochemistry, 2004, 36, 1389-1389.	4.2	0

#	Article	IF	CITATIONS
271	Tolerance to stress and environmental adaptability of Chromobacterium violaceum. Genetics and Molecular Research, 2004, 3, 102-16.	0.3	18
272	Diversity of a soybean rhizobial population adapted to a Cerrados soil. World Journal of Microbiology and Biotechnology, 2003, 19, 933-939.	1.7	32
273	Benefits of inoculation of the common bean (Phaseolus vulgaris) crop with efficient and competitive Rhizobium tropici strains. Biology and Fertility of Soils, 2003, 39, 88-93.	2.3	143
274	Long-Term Effects of Agricultural Practices on Microbial Community. , 2003, , 301-306.		3
275	Soybean response to starter nitrogen and Bradyrhizobium inoculation on a Cerrado oxisol under no-tillage and conventional tillage systems. Revista Brasileira De Ciencia Do Solo, 2003, 27, 81-87.	0.5	37
276	Caracterização genética de rizóbios nativos dos tabuleiros costeiros eficientes em culturas do guandu e caupi. Pesquisa Agropecuaria Brasileira, 2003, 38, 911-920.	0.9	12
277	Classificação taxonômica das estirpes de rizóbio recomendadas para as culturas da soja e do feijoeiro baseada no seqüenciamento do gene 16S rRNA. Revista Brasileira De Ciencia Do Solo, 2003, 27, 833-840.	0.5	17
278	Seleção de rizóbios nativos para guandu, caupi e feijão-de-porco nos tabuleiros costeiros de Sergipe. Pesquisa Agropecuaria Brasileira, 2003, 38, 835-842.	0.9	13
279	Soil-Atmosphere CO Exchanges and Microbial Biogeochemistry of CO Transformations in a Brazilian Agricultural Ecosystem. Applied and Environmental Microbiology, 2002, 68, 4480-4485.	1.4	20
280	Monitoring Azospirillum-wheat interactions using the gfp and gusA genes constitutively expressed from a new broad-host range vector. Journal of Biotechnology, 2002, 97, 243-252.	1.9	90
281	Selection of bean (Phaseolus vulgaris L.) rhizobial strains for the Brazilian Cerrados. Field Crops Research, 2002, 73, 121-132.	2.3	93
282	Recovery of soybean inoculant strains from uncropped soils in Brazil. Field Crops Research, 2002, 79, 139-152.	2.3	58
283	Diversity and symbiotic effectiveness of rhizobia isolated from field-grown soybean nodules in Paraguay. Biology and Fertility of Soils, 2002, 35, 448-457.	2.3	59
284	Genetics of nodulation and nitrogen fixation in Brazilian soybean cultivars. Biology and Fertility of Soils, 2002, 36, 109-117.	2.3	19
285	Effects of Concentrations and Sources of Molybdenum on the Survival of Bradyrhizobium Strains. Current Plant Science and Biotechnology in Agriculture, 2002, , 619-619.	0.0	0
286	Effects of Soil Tillage Management and Crop Rotation on Bradyrhizobia Population. Current Plant Science and Biotechnology in Agriculture, 2002, , 551-551.	0.0	0
287	Response of Field Grown Bean (Phaseolus vulgaris L.) to Rhizobium Inoculation and N Fertilization in Two Cerrados Soils. Current Plant Science and Biotechnology in Agriculture, 2002, , 613-613.	0.0	1
288	Selection of Rhizobium Strains for the Common Bean Crop. Current Plant Science and Biotechnology in Agriculture, 2002, , 624-624.	0.0	0

4

#	Article	IF	CITATIONS
289	Nitrogen Fixation Characteristics of Brazilian Soybean Cultivars. Current Plant Science and Biotechnology in Agriculture, 2002, , 340-340.	0.0	0
290	Brazilian Trials to Evaluate the Effects of Soybean Reinoculation. , 2002, , 549-549.		0
291	Symbiotic Performance of Soybean Sinorhlzobia Strains Isolated in Brazil. , 2002, , 625-625.		0
292	Soybean Bradyrhizobia Strains Isolated from Brazilian Soils Under Native Vegetation. , 2002, , 192-192.		0
293	Characterization of Soybean Bradyrhizobia Strains Adapted to the Brazilian Savannas. , 2002, , 194-194.		0
294	Preliminary characterization of fast growing rhizobial strains isolated from soyabean nodules in Brazil. Soil Biology and Biochemistry, 2001, 33, 1349-1361.	4.2	82
295	Symbiotic effectiveness of fast-growing rhizobial strains isolated from soybean nodules in Brazil. Biology and Fertility of Soils, 2001, 33, 387-394.	2.3	35
296	Eficiência da fixação biológica de N2 por estirpes de Bradyrhizobium na soja em plantio direto. Revista Brasileira De Ciencia Do Solo, 2001, 25, 583-592.	0.5	12
297	Response of field-grown bean (Phaseolus vulgaris L.) to Rhizobium inoculation and nitrogen fertilization in two Cerrados soils. Biology and Fertility of Soils, 2000, 32, 228-233.	2.3	74
298	Variability of nodulation and dinitrogen fixation capacity among soybean cultivars. Biology and Fertility of Soils, 2000, 31, 45-52.	2.3	54
299	Efeito de doses de inoculante turfoso na fixação biológica do nitrogênio pela cultura da soja. Revista Brasileira De Ciencia Do Solo, 2000, 24, 527-535.	0.5	3
300	Efeito de concentrações de solução açucarada na aderência do inoculante turfoso Ãs sementes, na nodulação e no rendimento da soja. Revista Brasileira De Ciencia Do Solo, 2000, 24, 515-526.	0.5	5
301	Genetic Characterization of Soybean Rhizobia in Paraguay. Applied and Environmental Microbiology, 2000, 66, 5099-5103.	1.4	86
302	Environmental factors affecting N2 fixation in grain legumes in the tropics, with an emphasis on Brazil. Field Crops Research, 2000, 65, 151-164.	2.3	499
303	Isolation and characterization of new efficient and competitive bean (Phaseolus vulgaris L.) rhizobia from Brazil. Soil Biology and Biochemistry, 2000, 32, 1515-1528.	4.2	178
304	Tillage method and crop rotation effects on the population sizes and diversity of bradyrhizobia nodulating soybean. Soil Biology and Biochemistry, 2000, 32, 627-637.	4.2	129
305	Benefit of Legume-Fixed N in Crop Rotations Under Zero-Tillage. , 2000, , 533-534.		3

Importance of Molybdenum and Cobalt to the Biological Nitrogen Fixation. , 2000, , 597-598.

#	Article	IF	CITATIONS
307	Characterization of soybean Bradyrhizobium strains adapted to the Brazilian savannas. FEMS Microbiology Ecology, 1999, 30, 261-272.	1.3	54
308	Ocorrência de bactérias diazotróficas e fungos micorrÃzicos arbusculares na cultura da mandioca. Pesquisa Agropecuaria Brasileira, 1999, 34, 1265-1276.	0.9	16
309	Nodulação e rendimento de soja co-infectada com Bacillus Subtilis e Bradyrhizobium Japonicum / Bradyrhizobium Elkanii. Pesquisa Agropecuaria Brasileira, 1999, 34, 1633-1643.	0.9	34
310	Nitrogen fixation capacity and nodule occupancy by Bradyrhizobium japonicum and B. elkanii strains. Biology and Fertility of Soils, 1998, 27, 393-399.	2.3	58
311	Biomassa microbiana e sua atividade em solos sob diferentes sistemas de preparo e sucessão de culturas. Revista Brasileira De Ciencia Do Solo, 1998, 22, 641-649.	0.5	77
312	Molecular signals exchanged between host plants and rhizobia: Basic aspects and potential application in agriculture. Soil Biology and Biochemistry, 1997, 29, 819-830.	4.2	125
313	Title is missing!. Plant and Soil, 1997, 196, 1-5.	1.8	22
314	Phenotypic grouping of Brazilian Bradyrhizobium strains which nodulate soybean. Biology and Fertility of Soils, 1997, 25, 407-415.	2.3	58
315	Comparison between parental and variant soybeanBradyrhizobium strains with regard to the production of lipo-chitin nodulation signals, early stages of root infection, nodule occupancy, and N2 fixation rates. Plant and Soil, 1996, 186, 331-341.	1.8	40
316	Comparison between parental and variant soybean Bradyrhizobium strains with regard to the production of lipo-chitin nodulation signals, early stages of root infection, nodule occupancy, and N2 fixation rates. Hydrobiologia, 1996, 186, 331-341.	1.0	2
317	Effects of high temperature on nodulation and nitrogen fixation by Phaseolus vulgaris L Plant and Soil, 1993, 149, 95-102.	1.8	104
318	New sources of high-temperature tolerant rhizobia for Phaseolus vulgaris L Plant and Soil, 1993, 149, 103-109.	1.8	82
319	Light-stimulated 14CO2 uptake and acetylene reduction by bacteriochlorophyll containing stem nodule isolate BTAi 1. Biology and Fertility of Soils, 1993, 15, 208-214.	2.3	14
320	Effects of a Seed Color Mutation on Rhizobial <i>nod</i> -Gene-Inducing Flavonoids and Nodulation in Common Bean. Molecular Plant-Microbe Interactions, 1993, 6, 418.	1.4	55
321	Physiological comparisons of root and stem nodules of Aeschynomene scabra and Sesbania rostrata. Plant and Soil, 1992, 139, 7-13.	1.8	16
322	Effects of Flavonoids Released Naturally from Bean (<i>Phaseolus vulgaris</i>) on <i>nodD</i> -Regulated Gene Transcription in <i>Rhizobium leguminosarum</i> bv. <i>phaseoli</i> . Molecular Plant-Microbe Interactions, 1992, 5, 199.	1.4	63
323	Nitrogen Fixation, Assimilation and Transport During the Initial Growth Stage ofPhaseolus vulgarisL. Journal of Experimental Botany, 1991, 42, 839-844.	2.4	22
324	Anthocyanidins and Flavonols, Major nod Gene Inducers from Seeds of a Black-Seeded Common Bean (Phaseolus vulgaris L.). Plant Physiology, 1991, 97, 751-758.	2.3	112

#	Article	IF	CITATIONS
325	<i>Rhizobium nod</i> Gene Inducers Exuded Naturally from Roots of Common Bean (<i>Phaseolus) Tj ETQq1</i>	1 0.784314 2.3	rgBT /Overloo
326	The first photosynthetic N2-fixing Rhizobium: Characteristics. , 1990, , 805-811.		50
327	Relative efficiency, ureide transport and harvest index in soybeans inoculated with isogenic HUP mutants of Bradyrhizobium japonicum. Biology and Fertility of Soils, 1989, 7, 325.	2.3	17
328	Acetylene reduction, hydrogen evolution and nodule respiration in Phaseolus vulgaris. Biology and Fertility of Soils, 1989, 7, 351.	2.3	4
329	Effect of potassium on nitrogen fixation, nitrogen transport, and nitrogen harvest index of bean. Journal of Plant Nutrition, 1988, 11, 175-188.	0.9	17
330	The physiology of nitrogen fixation in tropical grain legumes. Critical Reviews in Plant Sciences, 1987, 6, 267-321.	2.7	45
331	Cultivar and Rhizobium strain effect on nitrogen fixation and transport inPhaseolus vulgaris L Plant and Soil, 1987, 103, 111-121.	1.8	53
332	Effects of cotyledons and nitrate on the nitrogen assimilation ofPhaseolus vulgaris. MIRCEN Journal of Applied Microbiology and Biotechnology, 1987, 3, 411-419.	0.3	3
333	Methods for the study of nitrogen assimilation and transport in grain legumes. MIRCEN Journal of Applied Microbiology and Biotechnology, 1987, 3, 3-22.	0.3	22
334	Partitioning of nitrogen from biological fixation and fertilizer in Phaseolus vulgaris. Physiologia Plantarum, 1987, 69, 55-63.	2.6	19
335	Seasonal Variations on Nodule Metabolism of Phaseolus vulgaris. , 1984, , 505-505.		3
336	Bioprospecting of elite plant growth-promoting bacteria for the maize crop. Acta Scientiarum - Agronomy, 0, 42, e44364.	0.6	9
337	Mitigation of Mombasa Grass (Megathyrsus maximus) Dependence on Nitrogen Fertilization as a Function of Inoculation with Azospirillum brasilense. Revista Brasileira De Ciencia Do Solo, 0, 43, .	0.5	16
338	Physiological and N2-fixation-related traits for tolerance to drought in soybean progenies. Pesquisa Agropecuaria Brasileira, 0, 54, .	0.9	7
339	New Insights on Environmental Occurrence of Pathogenic Fungi Based on Metagenomic Data from Brazilian Cerrado Biome. Brazilian Archives of Biology and Technology, 0, 65, .	0.5	Ο

20