Viswanathan Natarajan

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4853015/publications.pdf

Version: 2024-02-01

139 7,675 52 81
papers citations h-index g-index

140 140 140 9187 all docs docs citations times ranked citing authors

#	Article	IF	CITATIONS
1	Ceramide upregulation causes pulmonary cell apoptosis and emphysema-like disease in mice. Nature Medicine, 2005, 11, 491-498.	30.7	471
2	Reactive oxygen species at the crossroads of inflammasome and inflammation. Frontiers in Physiology, 2014, 5, 352.	2.8	341
3	Hyperoxia-induced NAD(P)H oxidase activation and regulation by MAP kinases in human lung endothelial cells. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2003, 284, L26-L38.	2.9	180
4	Role of Nox4 and Nox2 in Hyperoxia-Induced Reactive Oxygen Species Generation and Migration of Human Lung Endothelial Cells. Antioxidants and Redox Signaling, 2009, 11, 747-764.	5.4	167
5	Role of sphingosine-1 phosphate in the enhancement of endothelial barrier integrity by platelet-released products. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2003, 285, L258-L267.	2.9	159
6	Redox Regulation of 4-Hydroxy-2-nonenal-mediated Endothelial Barrier Dysfunction by Focal Adhesion, Adherens, and Tight Junction Proteins. Journal of Biological Chemistry, 2006, 281, 35554-35566.	3.4	152
7	Differential Effects of Sphingosine 1–Phosphate Receptors on Airway and Vascular Barrier Function in the Murine Lung. American Journal of Respiratory Cell and Molecular Biology, 2010, 43, 394-402.	2.9	150
8	FTY720 Inhibits Ceramide Synthases and Up-regulates Dihydrosphingosine 1-Phosphate Formation in Human Lung Endothelial Cells. Journal of Biological Chemistry, 2009, 284, 5467-5477.	3.4	146
9	Role of Mitogen-activated Protein Kinases in 4-Hydroxy-2-nonenal-induced Actin Remodeling and Barrier Function in Endothelial Cells. Journal of Biological Chemistry, 2004, 279, 11789-11797.	3.4	144
10	Src-mediated Tyrosine Phosphorylation of p47 in Hyperoxia-induced Activation of NADPH Oxidase and Generation of Reactive Oxygen Species in Lung Endothelial Cells. Journal of Biological Chemistry, 2005, 280, 20700-20711.	3.4	132
11	Sphingosine-1–Phosphate, FTY720, and Sphingosine-1–Phosphate Receptors in the Pathobiology of Acute Lung Injury. American Journal of Respiratory Cell and Molecular Biology, 2013, 49, 6-17.	2.9	127
12	Quantitative analysis of sphingoid base-1-phosphates as bisacetylated derivatives by liquid chromatography–tandem mass spectrometry. Analytical Biochemistry, 2005, 339, 129-136.	2.4	125
13	Oxidized Phospholipids Reduce Vascular Leak and Inflammation in Rat Model of Acute Lung Injury. American Journal of Respiratory and Critical Care Medicine, 2006, 173, 1130-1138.	5.6	121
14	Intracellular Generation of Sphingosine 1-Phosphate in Human Lung Endothelial Cells. Journal of Biological Chemistry, 2007, 282, 14165-14177.	3.4	120
15	Protein Kinase Cδ Mediates Lysophosphatidic Acid-induced NF-ΰB Activation and Interleukin-8 Secretion in Human Bronchial Epithelial Cells. Journal of Biological Chemistry, 2004, 279, 41085-41094.	3.4	114
16	The Sphingosine Kinase 1/Sphingosine-1-Phosphate Pathway in Pulmonary Arterial Hypertension. American Journal of Respiratory and Critical Care Medicine, 2014, 190, 1032-1043.	5.6	112
17	Protection of LPS-Induced Murine Acute Lung Injury by Sphingosine-1-Phosphate Lyase Suppression. American Journal of Respiratory Cell and Molecular Biology, 2011, 45, 426-435.	2.9	110
18	The Sphingosine Kinase 1 Inhibitor 2-(p-Hydroxyanilino)-4-(p-chlorophenyl)thiazole Induces Proteasomal Degradation of Sphingosine Kinase 1 in Mammalian Cells*. Journal of Biological Chemistry, 2010, 285, 38841-38852.	3.4	106

#	Article	IF	CITATIONS
19	Autotaxin Production of Lysophosphatidic Acid Mediates Allergic Asthmatic Inflammation. American Journal of Respiratory and Critical Care Medicine, 2013, 188, 928-940.	5.6	106
20	Regulation of endothelial cell myosin light chain kinase by Rho, cortactin, and p60 ^{<i>src</i>} . American Journal of Physiology - Lung Cellular and Molecular Physiology, 1999, 276, L989-L998.	2.9	103
21	Redox regulation of Nox proteins. Respiratory Physiology and Neurobiology, 2010, 174, 265-271.	1.6	102
22	Lysophosphatidic acid (LPA) and its receptors: Role in airway inflammation and remodeling. Biochimica Et Biophysica Acta - Molecular and Cell Biology of Lipids, 2013, 1831, 86-92.	2.4	96
23	Transcriptional regulation of lysophosphatidic acid-induced interleukin-8 expression and secretion by p38 MAPK and JNK in human bronchial epithelial cells. Biochemical Journal, 2006, 393, 657-668.	3.7	93
24	Regulation of Lysophosphatidic Acid-induced Epidermal Growth Factor Receptor Transactivation and Interleukin-8 Secretion in Human Bronchial Epithelial Cells by Protein Kinase \hat{Cl} , Lyn Kinase, and Matrix Metalloproteinases. Journal of Biological Chemistry, 2006, 281, 19501-19511.	3.4	91
25	Particulate matter air pollution disrupts endothelial cell barrier via calpain-mediated tight junction protein degradation. Particle and Fibre Toxicology, 2012, 9, 35.	6.2	90
26	Nrf2 regulates hyperoxia-induced Nox4 expression in human lung endothelium: Identification of functional antioxidant response elements on the Nox4 promoter. Free Radical Biology and Medicine, 2011, 50, 1749-1759.	2.9	89
27	Differential regulation of sphingosine kinases 1 and 2 in lung injury. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2009, 296, L603-L613.	2.9	86
28	FoxM1 mediates the progenitor function of type II epithelial cells in repairing alveolar injury induced by <i>Pseudomonas aeruginosa</i> <ion style="color: blue;">Iournal of Experimental Medicine, 2011, 208, 1473-1484.</ion>	8.5	85
29	Lysophosphatidic Acid Receptor–2 Deficiency Confers Protection against Bleomycin-Induced Lung Injury and Fibrosis in Mice. American Journal of Respiratory Cell and Molecular Biology, 2013, 49, 912-922.	2.9	85
30	De novo biosynthesis of dihydrosphingosine-1-phosphate by sphingosine kinase 1 in mammalian cells. Cellular Signalling, 2006, 18, 1779-1792.	3.6	83
31	Targeting sphingosine kinase 1 attenuates bleomycinâ€induced pulmonary fibrosis. FASEB Journal, 2013, 27, 1749-1760.	0.5	83
32	Regulation of COX-2 Expression and IL-6 Release by Particulate Matter in Airway Epithelial Cells. American Journal of Respiratory Cell and Molecular Biology, 2009, 40, 19-30.	2.9	78
33	Phospholipase D Activation by Sphingosine 1-Phosphate Regulates Interleukin-8 Secretion in Human Bronchial Epithelial Cells. Journal of Biological Chemistry, 2002, 277, 30227-30235.	3.4	74
34	Sphingosine-1–Phosphate Receptor–3 Is a Novel Biomarker in Acute Lung Injury. American Journal of Respiratory Cell and Molecular Biology, 2012, 47, 628-636.	2.9	73
35	Role of c-Met/Phosphatidylinositol 3-Kinase (PI3k)/Akt Signaling in Hepatocyte Growth Factor (HGF)-mediated Lamellipodia Formation, Reactive Oxygen Species (ROS) Generation, and Motility of Lung Endothelial Cells. Journal of Biological Chemistry, 2014, 289, 13476-13491.	3.4	7 3
36	Lipid Mediators Regulate Pulmonary Fibrosis: Potential Mechanisms and Signaling Pathways. International Journal of Molecular Sciences, 2020, 21, 4257.	4.1	73

#	Article	IF	Citations
37	Signaling Pathways Involved in Adenosine Triphosphate-Induced Endothelial Cell Barrier Enhancement. Circulation Research, 2005, 97, 115-124.	4.5	72
38	Lipid phosphate phosphatase-1 regulates lysophosphatidic acid-induced calcium release, NF-κB activation and interleukin-8 secretion in human bronchial epithelial cells. Biochemical Journal, 2005, 385, 493-502.	3.7	70
39	Regulation of phospholipase D by tyrosine kinases. Chemistry and Physics of Lipids, 1996, 80, 103-116.	3.2	69
40	4-hydroxynonenal, a metabolite of lipid peroxidation, activates phospholipase D in vascular endothelial cells. Free Radical Biology and Medicine, 1993, 15, 365-375.	2.9	67
41	Activation of Protein Phosphorylation by Oxidants in Vascular Endothelial Cells: Identification of Tyrosine Phosphorylation of Caveolin. Free Radical Biology and Medicine, 1997, 22, 25-35.	2.9	63
42	Sphingolipids in pulmonary fibrosis. Advances in Biological Regulation, 2015, 57, 55-63.	2.3	63
43	Involvement of phospholipases D1 and D2 in sphingosine 1-phosphate-induced ERK (extracellular-signal-regulated kinase) activation and interleukin-8 secretion in human bronchial epithelial cells. Biochemical Journal, 2002, 367, 751-760.	3.7	62
44	Phospholipase D/phosphatidic acid signal transduction: Role and physiological significance in lung. Molecular and Cellular Biochemistry, 2002, 234/235, 99-109.	3.1	62
45	Simvastatin Attenuates Radiation-Induced Murine Lung Injury and Dysregulated Lung Gene Expression. American Journal of Respiratory Cell and Molecular Biology, 2011, 44, 415-422.	2.9	62
46	Sphingosine-1-phosphate lyase is an endogenous suppressor of pulmonary fibrosis: role of S1P signalling and autophagy. Thorax, 2015, 70, 1138-1148.	5.6	62
47	Involvement of Phospholipase D2 in Lysophosphatidate-induced Transactivation of Platelet-derived Growth Factor Receptor-1 ² in Human Bronchial Epithelial Cells. Journal of Biological Chemistry, 2003, 278, 39931-39940.	3.4	61
48	Phospholipase D-mediated Activation of IQGAP1 through Rac1 Regulates Hyperoxia-induced p47 Translocation and Reactive Oxygen Species Generation in Lung Endothelial Cells. Journal of Biological Chemistry, 2009, 284, 15339-15352.	3.4	61
49	Sphingosine Kinase 1/S1P Signaling Contributes to Pulmonary Fibrosis by Activating Hippo/YAP Pathway and Mitochondrial Reactive Oxygen Species in Lung Fibroblasts. International Journal of Molecular Sciences, 2020, 21, 2064.	4.1	60
50	Role of sphingolipids in murine radiationâ€induced lung injury: protection by sphingosine 1â€phosphate analogs. FASEB Journal, 2011, 25, 3388-3400.	0.5	57
51	Airway Epithelial Cell-Derived Colony Stimulating Factor-1 Promotes Allergen Sensitization. Immunity, 2018, 49, 275-287.e5.	14.3	57
52	Lipid Phosphate Phosphatase-1 Regulates Lysophosphatidate-induced Fibroblast Migration by Controlling Phospholipase D2-dependent Phosphatidate Generation. Journal of Biological Chemistry, 2006, 281, 38418-38429.	3.4	56
53	Epigenetic regulation of pro-inflammatory cytokine secretion by sphingosine 1-phosphate (S1P) in acute lung injury: Role of S1P lyase. Advances in Biological Regulation, 2017, 63, 156-166.	2.3	55
54	Targeting sphingosine-1-phosphate signaling in lung diseases. , 2016, 168, 143-157.		54

#	Article	IF	CITATIONS
55	Endothelial eNAMPT amplifies pre-clinical acute lung injury: efficacy of an eNAMPT-neutralising monoclonal antibody. European Respiratory Journal, 2021, 57, 2002536.	6.7	53
56	Lysophosphatidic acid-induced transactivation of epidermal growth factor receptor regulates cyclo-oxygenase-2 expression and prostaglandin E2 release via C/EBPβ in human bronchial epithelial cells. Biochemical Journal, 2008, 412, 153-162.	3.7	52
57	Protein Kinase C-ϵ Regulates Sphingosine 1-Phosphate-mediated Migration of Human Lung Endothelial Cells through Activation of Phospholipase D2, Protein Kinase C-ζ, and Rac1. Journal of Biological Chemistry, 2008, 283, 11794-11806.	3.4	51
58	Intracellular S1P Generation Is Essential for S1P-Induced Motility of Human Lung Endothelial Cells: Role of Sphingosine Kinase 1 and S1P Lyase. PLoS ONE, 2011, 6, e16571.	2.5	49
59	Sphingosine Kinase 1 Deficiency Confers Protection against Hyperoxia-Induced Bronchopulmonary Dysplasia in a Murine Model. American Journal of Pathology, 2013, 183, 1169-1182.	3.8	48
60	Store-operated Ca2+ Entry (SOCE) Induced by Protease-activated Receptor-1 Mediates STIM1 Protein Phosphorylation to Inhibit SOCE in Endothelial Cells through AMP-activated Protein Kinase and p38 \hat{l}^2 Mitogen-activated Protein Kinase. Journal of Biological Chemistry, 2013, 288, 17030-17041.	3.4	48
61	Occurrence of N-acylethanolamine phospholipids in fish brain and spinal cord. Lipids and Lipid Metabolism, 1985, 835, 426-433.	2.6	47
62	Hydroxyalkenals and oxidized phospholipids modulation of endothelial cytoskeleton, focal adhesion and adherens junction proteins in regulating endothelial barrier function. Microvascular Research, 2012, 83, 45-55.	2.5	47
63	The Mitochondrial Cardiolipin Remodeling Enzyme Lysocardiolipin Acyltransferase Is a Novel Target in Pulmonary Fibrosis. American Journal of Respiratory and Critical Care Medicine, 2014, 189, 1402-1415.	5.6	47
64	CFTR Regulation of Intracellular pH and Ceramides Is Required for Lung Endothelial Cell Apoptosis. American Journal of Respiratory Cell and Molecular Biology, 2009, 41, 314-323.	2.9	45
65	Role of Migratory Inhibition Factor in Age-Related Susceptibility to Radiation Lung Injury via NF-E2–Related Factor–2 and Antioxidant Regulation. American Journal of Respiratory Cell and Molecular Biology, 2013, 49, 269-278.	2.9	45
66	Inhibition of serine palmitoyltransferase delays the onset of radiation-induced pulmonary fibrosis through the negative regulation of sphingosine kinase-1 expression. Journal of Lipid Research, 2012, 53, 1553-1568.	4.2	43
67	Role of Nicotinamide Adenine Dinucleotide Phosphate–Reduced Oxidase Proteins in <i>Pseudomonas aeruginosa</i> à6€"Induced Lung Inflammation and Permeability. American Journal of Respiratory Cell and Molecular Biology, 2013, 48, 477-488.	2.9	42
68	Sphingosine-1-Phosphate Receptor 1 Activity Promotes Tumor Growth by Amplifying VEGF-VEGFR2 Angiogenic Signaling. Cell Reports, 2019, 29, 3472-3487.e4.	6.4	41
69	SPHK2-Generated S1P in CD11b+ Macrophages Blocks STING to Suppress the Inflammatory Function of Alveolar Macrophages. Cell Reports, 2020, 30, 4096-4109.e5.	6.4	40
70	Role of acylglycerol kinase in LPA-induced IL-8 secretion and transactivation of epidermal growth factor-receptor in human bronchial epithelial cells. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2009, 296, L328-L336.	2.9	39
71	Nuclear factor, erythroid 2-like 2-associated molecular signature predicts lung cancer survival. Scientific Reports, 2015, 5, 16889.	3.3	39
72	Autotaxin activity increases locally following lung injury, but is not required for pulmonary lysophosphatidic acid production or fibrosis. FASEB Journal, 2016, 30, 2435-2450.	0.5	38

#	Article	IF	Citations
73	PDGF induces SphK1 expression via Egr-1 to promote pulmonary artery smooth muscle cell proliferation. American Journal of Physiology - Cell Physiology, 2016, 310, C983-C992.	4.6	38
74	<i>Pseudomonas aeruginosa</i> stimulates nuclear sphingosine-1-phosphate generation and epigenetic regulation of lung inflammatory injury. Thorax, 2019, 74, 579-591.	5 . 6	38
75	Angiocrine Sphingosine-1-Phosphate Activation of S1PR2-YAP Signaling Axis in Alveolar Type II Cells Is Essential for Lung Repair. Cell Reports, 2020, 31, 107828.	6.4	38
76	Characterization of sphingosine-1-phosphate lyase activity by electrospray ionization–liquid chromatography/tandem mass spectrometry quantitation of (2E)-hexadecenal. Analytical Biochemistry, 2011, 408, 12-18.	2.4	37
77	Polyunsaturated lysophosphatidic acid as a potential asthma biomarker. Biomarkers in Medicine, 2016, 10, 123-135.	1.4	37
78	Nuclear lipid mediators: Role of nuclear sphingolipids and sphingosineâ€1â€phosphate signaling in epigenetic regulation of inflammation and gene expression. Journal of Cellular Biochemistry, 2018, 119, 6337-6353.	2.6	35
79	Phospholipase D/phosphatidic acid signal transduction: role and physiological significance in lung. Molecular and Cellular Biochemistry, 2002, 234-235, 99-109.	3.1	34
80	Phosphatase Inhibitors Potentiate 4-Hydroxynonenal-induced Phospholipase D Activation in Vascular Endothelial Cells. American Journal of Respiratory Cell and Molecular Biology, 1997, 17, 251-259.	2.9	33
81	Photolysis of caged sphingosine-1-phosphate induces barrier enhancement and intracellular activation of lung endothelial cell signaling pathways. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2011, 300, L840-L850.	2.9	33
82	Hyperoxia-induced p47 ^{<i>phox</i>} activation and ROS generation is mediated through S1P transporter Spns2, and S1P/S1P _{1&2} signaling axis in lung endothelium. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2016, 311, L337-L351.	2.9	33
83	Micro-RNA-1 is decreased by hypoxia and contributes to the development of pulmonary vascular remodeling via regulation of sphingosine kinase 1. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2018, 314, L461-L472.	2.9	33
84	Integrin signalling regulates the nuclear localization and function of the lysophosphatidic acid receptor-1 (LPA1) in mammalian cells. Biochemical Journal, 2006, 398, 55-62.	3.7	32
85	Dynamin 2 and c-Abl Are Novel Regulators of Hyperoxia-mediated NADPH Oxidase Activation and Reactive Oxygen Species Production in Caveolin-enriched Microdomains of the Endothelium. Journal of Biological Chemistry, 2009, 284, 34964-34975.	3.4	32
86	Role of Sphingosine Kinase 1 and S1P Transporter Spns2 in HGF-mediated Lamellipodia Formation in Lung Endothelium. Journal of Biological Chemistry, 2016, 291, 27187-27203.	3.4	32
87	Light-regulated allosteric switch enables temporal and subcellular control of enzyme activity. ELife, 2020, 9, .	6.0	32
88	Sphingosine kinase localization in the control of sphingolipid metabolism. Advances in Enzyme Regulation, 2011, 51, 229-244.	2.6	31
89	Phosphatidic Acid Produced by RalA-activated PLD2 Stimulates Caveolae-mediated Endocytosis and Trafficking in Endothelial Cells. Journal of Biological Chemistry, 2016, 291, 20729-20738.	3.4	30
90	c-Abl mediated tyrosine phosphorylation of paxillin regulates LPS-induced endothelial dysfunction and lung injury. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2015, 308, L1025-L1038.	2.9	29

#	Article	IF	CITATIONS
91	Role of phospholipase D in bleomycin-induced mitochondrial reactive oxygen species generation, mitochondrial DNA damage, and pulmonary fibrosis. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2019, 317, L175-L187.	2.9	29
92	Lysocardiolipin acyltransferase regulates TGF- \hat{l}^2 mediated lung fibroblast differentiation. Free Radical Biology and Medicine, 2017, 112, 162-173.	2.9	28
93	Sphingolipids in Ventilator Induced Lung Injury: Role of Sphingosine-1-Phosphate Lyase. International Journal of Molecular Sciences, 2018, 19, 114.	4.1	26
94	Mitochondrial 8-oxoguanine DNA glycosylase mitigates alveolar epithelial cell PINK1 deficiency, mitochondrial DNA damage, apoptosis, and lung fibrosis. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2020, 318, L1084-L1096.	2.9	26
95	Colonyâ€stimulating factor 1 and its receptor are new potential therapeutic targets for allergic asthma. Allergy: European Journal of Allergy and Clinical Immunology, 2020, 75, 357-369.	5.7	25
96	Inhibited Insulin Signaling in Mouse Hepatocytes Is Associated with Increased Phosphatidic Acid but Not Diacylglycerol. Journal of Biological Chemistry, 2015, 290, 3519-3528.	3.4	23
97	The Role of Nicotinamide Adenine Dinucleotide Phosphate Oxidases in Lung Architecture Remodeling. Antioxidants, 2017, 6, 104.	5.1	23
98	eNAMPT neutralization reduces preclinical ARDS severity via rectified NFkB and Akt/mTORC2 signaling. Scientific Reports, 2022, 12, 696.	3.3	23
99	Coronin 1B Regulates S1P-Induced Human Lung Endothelial Cell Chemotaxis: Role of PLD2, Protein Kinase C and Rac1 Signal Transduction. PLoS ONE, 2013, 8, e63007.	2.5	21
100	Role Played by Paxillin and Paxillin Tyrosine Phosphorylation in Hepatocyte Growth Factor/Sphingosineâ€1â€Phosphateâ€Mediated Reactive Oxygen Species Generation, Lamellipodia Formation, and Endothelial Barrier Function. Pulmonary Circulation, 2015, 5, 619-630.	1.7	21
101	Pulmonary Endothelial Cell Barrier Enhancement by Novel FTY720 Analogs: Methoxy-FTY720, Fluoro-FTY720, and Î ² -Glucuronide-FTY720. Chemistry and Physics of Lipids, 2015, 191, 16-24.	3.2	21
102	All-Trans Retinoic Acid Induces TGF- \hat{l}^22 in Intestinal Epithelial Cells via RhoA- and p38 \hat{l}^\pm MAPK-Mediated Activation of the Transcription Factor ATF2. PLoS ONE, 2015, 10, e0134003.	2.5	20
103	Neonatal therapy with PF543, a sphingosine kinase 1 inhibitor, ameliorates hyperoxia-induced airway remodeling in a murine model of bronchopulmonary dysplasia. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2020, 319, L497-L512.	2.9	19
104	S1P and plasmalogen derived fatty aldehydes in cellular signaling and functions. Biochimica Et Biophysica Acta - Molecular and Cell Biology of Lipids, 2020, 1865, 158681.	2.4	19
105	Phospholipase D Signaling Mediates Reactive Oxygen Speciesâ€Induced Lung Endothelial Barrier Dysfunction. Pulmonary Circulation, 2013, 3, 108-115.	1.7	18
106	Phospholipase D2 restores endothelial barrier function by promoting PTPN14-mediated VE-cadherin dephosphorylation. Journal of Biological Chemistry, 2020, 295, 7669-7685.	3.4	17
107	The Sphingosine Kinase 1 Inhibitor, PF543, Mitigates Pulmonary Fibrosis by Reducing Lung Epithelial Cell mtDNA Damage and Recruitment of Fibrogenic Monocytes. International Journal of Molecular Sciences, 2020, 21, 5595.	4.1	16
108	Essential role for paxillin tyrosine phosphorylation in LPS-induced mitochondrial fission, ROS generation and lung endothelial barrier loss. Scientific Reports, 2021, 11, 17546.	3.3	16

#	Article	IF	Citations
109	Sphingosine Kinase 1 Is Required for Mesothelioma Cell Proliferation: Role of Histone Acetylation. PLoS ONE, 2012, 7, e45330.	2.5	15
110	Regulation of Thrombin-Induced Lung Endothelial Cell Barrier Disruption by Protein Kinase C Delta. PLoS ONE, 2016, 11, e0158865.	2.5	15
111	The Roles of Sphingosine Kinase 1 and 2 in Regulating the Metabolome and Survival of Prostate Cancer Cells. Biomolecules, 2013, 3, 316-333.	4.0	13
112	"Pulmonary Endothelial Cell Barrier Enhancement by Novel FTY720 Analogs: Methoxy-FTY720, Fluoro-FTY720, and β-Glucuronide-FTY720― Chemistry and Physics of Lipids, 2016, 194, 85-93.	3.2	13
113	Expression profiling of genes regulated by sphingosine kinase1 signaling in a murine model of hyperoxia induced neonatal bronchopulmonary dysplasia. BMC Genomics, 2017, 18, 664.	2.8	13
114	Genetic deletion of Sphk2 confers protection against Pseudomonas aeruginosa mediated differential expression of genes related to virulent infection and inflammation in mouse lung. BMC Genomics, 2019, 20, 984.	2.8	13
115	Sphingolipids Signaling in Lamellipodia Formation and Enhancement of Endothelial Barrier Function. Current Topics in Membranes, 2018, 82, 1-31.	0.9	12
116	Lysocardiolipin acyltransferase regulates NSCLC cell proliferation and migration by modulating mitochondrial dynamics. Journal of Biological Chemistry, 2020, 295, 13393-13406.	3.4	12
117	The Role of Sphingolipid Signaling in Oxidative Lung Injury and Pathogenesis of Bronchopulmonary Dysplasia. International Journal of Molecular Sciences, 2022, 23, 1254.	4.1	12
118	NOX4 Mediates Pseudomonas aeruginosa-Induced Nuclear Reactive Oxygen Species Generation and Chromatin Remodeling in Lung Epithelium. Antioxidants, 2021, 10, 477.	5.1	11
119	Nuclear Sphingosine-1-phosphate Lyase Generated â^†2-hexadecenal is A Regulator of HDAC Activity and Chromatin Remodeling in Lung Epithelial Cells. Cell Biochemistry and Biophysics, 2021, 79, 575-592.	1.8	10
120	Cross-talk between lysophosphatidic acid receptor 1 and tropomyosin receptor kinase A promotes lung epithelial cell migration. Biochimica Et Biophysica Acta - Molecular Cell Research, 2016, 1863, 229-235.	4.1	9
121	Sphingosine kinase 1 regulates lysyl oxidase through STAT3 in hyperoxia-mediated neonatal lung injury. Thorax, 2022, 77, 47-57.	5.6	8
122	Advancements in understanding the role of lysophospholipids and their receptors in lung disorders including bronchopulmonary dysplasia. Biochimica Et Biophysica Acta - Molecular and Cell Biology of Lipids, 2020, 1865, 158685.	2.4	7
123	Hyperoxia-induced S1P1 signaling reduced angiogenesis by suppression of TIE-2 leading to experimental bronchopulmonary dysplasia. Cell Biochemistry and Biophysics, 2021, 79, 561-573.	1.8	7
124	Role of Lysocardiolipin Acyltransferase in Cigarette Smoke-Induced Lung Epithelial Cell Mitochondrial ROS, Mitochondrial Dynamics, and Apoptosis. Cell Biochemistry and Biophysics, 2022, 80, 203-216.	1.8	7
125	Cortactin Modulates Lung Endothelial Apoptosis Induced by Cigarette Smoke. Cells, 2021, 10, 2869.	4.1	6
126	Mind the Gap between the Endothelium and E3 Ubiquitin Ligase: TRIM21 Is a Viable Therapeutic Target in Sepsis-induced Endothelial Dysfunction. American Journal of Respiratory Cell and Molecular Biology, 2019, 61, 676-677.	2.9	5

#	Article	IF	CITATIONS
127	Cigarette Smoke and Nicotine-Containing Electronic-Cigarette Vapor Downregulate Lung WWOX Expression, Which Is Associated with Increased Severity of Murine Acute Respiratory Distress Syndrome. American Journal of Respiratory Cell and Molecular Biology, 2021, 64, 89-99.	2.9	5
128	Infrared spectral microscopy as a tool to monitor lung fibrosis development in a model system. Biomedical Optics Express, 2020, 11, 3996.	2.9	5
129	Nuclear S1P Lyase Regulates Histone Acetylation In <i>Pseudomonas aeruginosa</i> â€Induced Lung Inflammation. FASEB Journal, 2015, 29, 863.26.	0.5	3
130	NOX4 Mediates Epithelial Cell Death in Hyperoxic Acute Lung Injury Through Mitochondrial Reactive Oxygen Species. Frontiers in Pharmacology, 2022, 13, .	3.5	3
131	My Journey in Academia as a Lipid Biochemist. Cell Biochemistry and Biophysics, 2021, 79, 433-444.	1.8	2
132	î"â€⊋ Hexadecenal Generated from S1P by Nuclear S1P Lyase Is a Regulator of HDAC1/2 Activity and Histone Acetylation in Lung Epithelial Cells. FASEB Journal, 2019, 33, 489.3.	0.5	2
133	Cortactin Loss Protects Against Hemin-Induced Acute Lung Injury in Sickle Cell Disease. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2022, , .	2.9	2
134	Cigarette or Eâ€cigarette content alters autophagy and permeability of lung endothelium. FASEB Journal, 2021, 35, .	0.5	0
135	PARâ€1 induced AMPKâ€p38 MAPK signaling axis mediates STIM1 phosphorylation to prevent calcium entry through TRPC channels in endothelial cells. FASEB Journal, 2012, 26, 1056.13.	0.5	O
136	Role of SphK1/S1P/Spns2/S1P ₁ signaling in HGFâ€mediated lamellipodia formation and migration of human lung endothelial cells. FASEB Journal, 2015, 29, 863.6.	0.5	0
137	Stainless Imaging To Identify The Biochemical changes during Bleomycinâ€Induced Pulmonary Fibrosis By Fourier Transform Infrared Technique. FASEB Journal, 2018, 32, 674.2.	0.5	0
138	Expression profiling of genes regulated by Sphingosine kinase 2 in a murine model of <i>Pseudomonas aeruginosa</i> mediated acute lung inflammation. FASEB Journal, 2018, 32, 540.11.	0.5	0
139	Sphingosine Kinase 2 Expression in CD11b + Macrophages Negatively Regulates cGASSTING Activity and Resolves Lung Injury. FASEB Journal, 2018, 32, 832.18.	0.5	O