
Ignacio V MeliÃ;n-Cabrera

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4852945/publications.pdf

Version: 2024-02-01

#	Article	IF	CITATIONS
1	Caprolactam from Renewable Resources: Catalytic Conversion of 5â€Hydroxymethylfurfural into Caprolactone. Angewandte Chemie - International Edition, 2011, 50, 7083-7087.	7.2	409
2	Production of hydrogen from methanol over Cu/ZnO catalysts promoted by ZrO2 and Al2O3. Journal of Catalysis, 2003, 219, 389-403.	3.1	364
3	An efficient one pot conversion of glycerol to lactic acid using bimetallic gold-platinum catalysts on a nanocrystalline CeO2 support. Applied Catalysis B: Environmental, 2014, 147, 92-100.	10.8	178
4	Synergy of FexCe1â^'xO2 mixed oxides for N2O decomposition. Journal of Catalysis, 2006, 239, 340-346.	3.1	177
5	Catalyst studies on the hydrotreatment of fast pyrolysis oil. Applied Catalysis B: Environmental, 2010, 99, 298-306.	10.8	162
6	Insights in the hydrotreatment of fast pyrolysis oil using a ruthenium on carbon catalyst. Energy and Environmental Science, 2010, 3, 962.	15.6	149
7	Catalytic hydrotreatment of fast pyrolysis oil using bimetallic Ni–Cu catalysts on various supports. Applied Catalysis A: General, 2012, 449, 121-130.	2.2	121
8	Reverse Topotactic Transformation of a Cu?Zn?Al Catalyst during Wet Pd Impregnation: Relevance for the Performance in Methanol Synthesis from CO2/H2 Mixtures. Journal of Catalysis, 2002, 210, 273-284.	3.1	119
9	CO2 absorption into aqueous amine blended solutions containing monoethanolamine (MEA), N,N-dimethylethanolamine (DMEA), N,N-diethylethanolamine (DEEA) and 2-amino-2-methyl-1-propanol (AMP) for post-combustion capture processes. Chemical Engineering Science, 2015, 126, 446-454.	1.9	119
10	Pd-Modified Cu?Zn Catalysts for Methanol Synthesis from CO2/H2 Mixtures: Catalytic Structures and Performance. Journal of Catalysis, 2002, 210, 285-294.	3.1	116
11	Biomass to Fuels. Chemical Engineering Research and Design, 2007, 85, 466-472.	2.7	112
12	Utilizing full-exchange capacity of zeolites by alkaline leaching: Preparation of Fe-ZSM5 and application in N2O decomposition. Journal of Catalysis, 2006, 238, 250-259.	3.1	108
13	From 5-Hydroxymethylfurfural (HMF) to Polymer Precursors: Catalyst Screening Studies on the Conversion of 1,2,6-hexanetriol to 1,6-hexanediol. Topics in Catalysis, 2012, 55, 612-619.	1.3	100
14	Production of hydrogen from methanol over binary Cu/ZnO catalysts. Applied Catalysis A: General, 2003, 253, 201-211.	2.2	98
15	Acidity and accessibility studies of desilicated ZSM-5 zeolites in terms of their effectiveness as catalysts in acid-catalyzed cracking processes. Catalysis Science and Technology, 2017, 7, 858-873.	2.1	78
16	Interfacial Properties of an Ir/TiO2 System and Their Relevance in Crotonaldehyde Hydrogenation. Journal of Catalysis, 2002, 208, 229-237.	3.1	67
17	Catalyst studies on the ring opening of tetrahydrofuran–dimethanol to 1,2,6-hexanetriol. Catalysis Today, 2013, 210, 106-116.	2.2	67
18	CO2 hydrogenation over Pd-modified methanol synthesis catalysts. Catalysis Today, 1998, 45, 251-256	9 9	60

#	Article	IF	CITATIONS
19	Title is missing!. Catalysis Letters, 2002, 79, 165-170.	1.4	56
20	Recovering waste plastics using shape-selective nano-scale reactors as catalysts. Nature Sustainability, 2019, 2, 39-42.	11.5	53
21	Highly active and stable ion-exchanged Fe–Ferrierite catalyst for N2O decomposition under nitric acid tail gas conditions. Catalysis Communications, 2005, 6, 301-305.	1.6	49
22	Thermal decomposition of a hydrotalcite-containing Cu–Zn–Al precursor: thermal methods combined with an in situ DRIFT study. Physical Chemistry Chemical Physics, 2002, 4, 3122-3127.	1.3	47
23	Liquid phase hydrogenation of crotonaldehyde over bimetallic Rh-Sn/SiO2 catalysts. Applied Catalysis A: General, 2002, 233, 183-196.	2.2	47
24	Baseâ€Free, Oneâ€Pot Chemocatalytic Conversion of Glycerol to Methyl Lactate using Supported Gold Catalysts. ChemSusChem, 2014, 7, 1140-1147.	3.6	42
25	Stabilization of Self-Assembled Alumina Mesophases. Chemistry of Materials, 2013, 25, 848-855.	3.2	40
26	Synergy between metals in bimetallic zeolite supported catalyst for NO-promoted N2O decomposition. Catalysis Letters, 2005, 99, 41-44.	1.4	37
27	Pd-modified beta zeolite for modulated hydro-cracking of low-density polyethylene into a paraffinic-rich hydrocarbon fuel. Applied Catalysis B: Environmental, 2020, 277, 119070.	10.8	37
28	One-pot catalyst preparation: combined detemplating and Fe ion-exchange of BEA through Fenton's chemistry. Chemical Communications, 2005, , 2178-2180.	2.2	30
29	Exploratory Catalyst Screening Studies on the Base Free Conversion of Glycerol to Lactic Acid and Glyceric Acid in Water Using Bimetallic Au–Pt Nanoparticles on Acidic Zeolites. Topics in Catalysis, 2014, 57, 1445-1453.	1.3	29
30	Making coke a more efficient catalyst in the oxidative dehydrogenation of ethylbenzene using wide-pore transitional aluminas. Journal of Molecular Catalysis A, 2014, 381, 179-187.	4.8	29
31	Oxidative dehydrogenation of ethylbenzene to styrene over alumina: effect of calcination. Catalysis Science and Technology, 2013, 3, 519-526.	2.1	28
32	Innovations in the synthesis of Fe-(exchanged)-zeolites. Catalysis Today, 2005, 110, 255-263.	2.2	27
33	Condensation-Enhanced Self-Assembly as a Route to High Surface Area α-Aluminas. Chemistry of Materials, 2013, 25, 3971-3978.	3.2	25
34	Catalytic Materials: Concepts to Understand the Pathway to Implementation. Industrial & Engineering Chemistry Research, 2021, 60, 18545-18559.	1.8	25
35	On the stability of conventional and nano-structured carbon-based catalysts in the oxidative dehydrogenation of ethylbenzene under industrially relevant conditions. Carbon, 2014, 77, 329-340.	5.4	24
36	Operando Study Reveals the Superior Cracking Activity and Stability of Hierarchical ZSMâ€5 Catalyst for the Cracking of Lowâ€Đensity Polyethylene. ChemSusChem, 2019, 12, 633-638.	3.6	23

#	Article	IF	CITATIONS
37	The oxidative esterification of glycerol to methyl glycerate in methanol using gold on oxidic supports: an insight in product selectivity. Green Chemistry, 2012, 14, 2031.	4.6	21
38	Tail gas catalyzed N2O decomposition over Fe-beta zeolite. On the promoting role of framework connected AlO6 sites in the vicinity of Fe by controlled dealumination during exchange. Applied Catalysis B: Environmental, 2017, 203, 218-226.	10.8	21
39	Alkaline leaching for synthesis of improved Fe-ZSM5 catalysts. Catalysis Communications, 2006, 7, 100-103.	1.6	20
40	Advanced oxidation process for coke removal: A systematic study of hydrogen peroxide and OH-derived-Fenton radicals of a fouled zeolite. Applied Catalysis A: General, 2018, 562, 215-222.	2.2	20
41	Application of staged O2 feeding in the oxidative dehydrogenation of ethylbenzene to styrene over Al2O3 and P2O5/SiO2 catalysts. Applied Catalysis A: General, 2014, 476, 204-214.	2.2	18
42	Title is missing!. Catalysis Letters, 2002, 84, 153-161.	1.4	17
43	Detemplation of soft mesoporous silica nanoparticles with structural preservation. Journal of Materials Chemistry A, 2013, 1, 4747.	5.2	17
44	On the hydrothermal stability of MCM-41. Evidence of capillary tension-induced effects. Microporous and Mesoporous Materials, 2016, 220, 88-98.	2.2	17
45	Thermal detemplation of SBA-15 mesophases. Effect of the activation protocol on the framework contraction. Microporous and Mesoporous Materials, 2013, 176, 103-111.	2.2	14
46	Modifying the Hierarchical Porosity of SBA-15 via Mild-Detemplation Followed by Secondary Treatments. Journal of Physical Chemistry C, 2014, 118, 28689-28698.	1.5	13
47	Oxidation of o-xylene on mesoporous Ti-phosphate-supported VOx catalysts and promoter effect of K+ on selectivity. Catalysis Today, 2005, 99, 179-186.	2.2	12
48	Room temperature detemplation of zeolites through H2O2-mediated oxidation. Chemical Communications, 2005, , 2744.	2.2	12
49	Ion exchanged Fe-FER through H2O2-assisted decomplexation of organic salts. Chemical Communications, 2005, , 1525-1527.	2.2	11
50	Coke formation in the oxidative dehydrogenation of ethylbenzene to styrene by TEOM. Catalysis Science and Technology, 2014, 4, 3879-3890.	2.1	11
51	On the thermal stabilization of carbon-supported SiO2 catalysts by phosphorus: Evaluation in the oxidative dehydrogenation of ethylbenzene to styrene and a comparison with relevant catalysts. Applied Catalysis A: General, 2016, 514, 173-181.	2.2	11
52	The Brunauer–Emmett–Teller model on alumino-silicate mesoporous materials. How far is it from the true surface area?. Microporous and Mesoporous Materials, 2021, 319, 111065.	2.2	11
53	On the drug adsorption capacity of SBA-15 obtained from various detemplation protocols. Materials Letters, 2014, 131, 186-189.	1.3	10
54	Direct activation of microcrystalline zeolites. Microporous and Mesoporous Materials, 2013, 171, 208-214.	2.2	9

#	Article	IF	CITATIONS
55	An <i>in situ</i> reactivation study reveals the supreme stability of γ-alumina for the oxidative dehydrogenation of ethylbenzene to styrene. Catalysis Science and Technology, 2018, 8, 3733-3736.	2.1	9
56	Overcoming the Engineering Constraints for Scaling-Up the State-of-the-Art Catalyst for Tail-Gas N ₂ O Decomposition. Industrial & Engineering Chemistry Research, 2018, 57, 939-945.	1.8	8
57	Fenton chemistry-based detemplation of an industrially relevant microcrystalline beta zeolite. Optimization and scaling-up studies. Microporous and Mesoporous Materials, 2015, 206, 58-66.	2.2	7
58	Silica promoted self-assembled mesoporous aluminas. Impact of the silica precursor on the structural, textural and acidic properties. Catalysis Today, 2015, 250, 115-122.	2.2	7
59	Improved Catalytic Technology for Waste Plastic Processing: Toward Novel Remediation and Emission Control Measures. ACS Sustainable Chemistry and Engineering, 2019, 7, 129-133.	3.2	7
60	Bulk and Surface Structures of Palladium-Modified Copperâ^'Zinc OxidesexHydroxycarbonate Precursors. Chemistry of Materials, 2002, 14, 1863-1872.	3.2	6
61	A hydrothermally stable transition alumina by condensation-enhanced self-assembly and pyrolysis crystallization: application in the steam reforming of methane. CrystEngComm, 2014, 16, 6775-6783.	1.3	6
62	Hot-spots during the calcination of MCM-41: A SAXS comparative analysis of a soft mesophase. Materials Letters, 2014, 118, 51-54.	1.3	6
63	On the geometric trajectories of pores during the thermal sintering of relevant catalyst supports. Scripta Materialia, 2021, 194, 113679.	2.6	6
64	Fenton detemplation of ordered (meso)porous materials. Studies in Surface Science and Catalysis, 2007, 170, 648-654.	1.5	5
65	Protocol optimization for the mild detemplation of mesoporous silica nanoparticles resulting in enhanced texture and colloidal stability. Microporous and Mesoporous Materials, 2016, 220, 110-119.	2.2	5
66	Novel reactivation allows effective reuse of Nafion® super-acid nano-catalyst. Applied Catalysis A: General, 2019, 569, 134-140.	2.2	5
67	Process Intensification of Mesoporous Material's Synthesis by Microwave-Assisted Surfactant Removal. ACS Sustainable Chemistry and Engineering, 2020, 8, 16814-16822.	3.2	5
68	A note on the acid strength of porous materials assessed by thermal methods. Microporous and Mesoporous Materials, 2021, 310, 110638.	2.2	5
69	Solvent Additive-Induced Deactivation of the Cu–ZnO(Al2O3)-Catalyzed γ-Butyrolactone Hydrogenolysis: A Rare Deactivation Process. Industrial & Engineering Chemistry Research, 2021, 60, 15999-16010.	1.8	4
70	Temperature control in DRIFT cells used for in situ and operando studies: where do we stand today?. Physical Chemistry Chemical Physics, 2020, 22, 26088-26092.	1.3	3
71	Mild Upgrading of Bio rude Pyrolysis Oil: A Concept Based on Bioâ€Based Alcohols with Selective Water Adsorption. Energy Technology, 2018, 6, 1209-1213.	1.8	2
72	Reactant Additive-Triggered Deactivation of Pd/γ-Alumina-Catalyzed Hydrogenation Reactions. A Reactivity and Adsorption Study. Industrial & Engineering Chemistry Research, 2020, 59, 17762-17768.	1.8	2

#	Article	IF	CITATIONS
73	Tooling up Heterogeneous Catalysis through Fenton's Chemistry. Detemplation and functionalization of micro- And mesoporous materials Studies in Surface Science and Catalysis, 2006, 162, 37-46.	1.5	1
74	Thermal stability of porous sol-gel phosphosilicates and their surface area stabilisation by lanthanum addition. Materials Letters, 2016, 178, 91-94.	1.3	1
75	Fundamental Catalysis and Engineering Challenges in Energy Harvesting. Industrial & Engineering Chemistry Research, 2019, 58, 17615-17620.	1.8	1
76	Complex Crystallization Kinetics of a Mg–Al Hydrotalcite and Their Practical Implications from the Process Point of View. Industrial & Engineering Chemistry Research, 2021, 60, 11848-11854.	1.8	1
77	Corrigendum to "On the drug adsorption capacity of SBA-15 obtained from various detemplation protocols―[Mater. Lett. 131 (2014) 186–189]. Materials Letters, 2022, 309, 131425.	1.3	0
78	Selectivity-induced conversion model explaining the coke-catalysed O2-mediated styrene synthesis over wide-pore aluminas. Molecular Catalysis, 2022, 524, 112301.	1.0	0
79	A Simplified Kinetic Model for the Enantioselective Hydrogenation of 1-Phenyl-1,2-Propanedione over Ir/TiO ₂ in the Presence of a Chiral Additive. Industrial & Engineering Chemistry Research, 2022, 61, 6052-6056.	1.8	Ο