Fabio Sallustio

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4852933/publications.pdf

Version: 2024-02-01

92 papers 2,161 citations

201385 27 h-index 243296 44 g-index

100 all docs 100 docs citations

100 times ranked

3002 citing authors

#	Article	IF	CITATIONS
1	Abnormal miR-148b Expression Promotes Aberrant Glycosylation of IgA1 in IgA Nephropathy. Journal of the American Society of Nephrology: JASN, 2012, 23, 814-824.	3.0	176
2	Integrated multi-omics characterization reveals a distinctive metabolic signature and the role of NDUFA4L2 in promoting angiogenesis, chemoresistance, and mitochondrial dysfunction in clear cell renal cell carcinoma. Aging, 2018, 10, 3957-3985.	1.4	133
3	TLR2 plays a role in the activation of human resident renal stem/progenitor cells. FASEB Journal, 2010, 24, 514-525.	0.2	107
4	Altered modulation of WNT–β-catenin and PI3K/Akt pathways in IgA nephropathy. Kidney International, 2010, 78, 396-407.	2.6	78
5	Urinary miRNA-27b-3p and miRNA-1228-3p correlate with the progression of Kidney Fibrosis in Diabetic Nephropathy. Scientific Reports, 2019, 9, 11357.	1.6	75
6	MicroRNAs in kidney diseases: new promising biomarkers for diagnosis and monitoring. Nephrology Dialysis Transplantation, 2014, 29, 755-763.	0.4	72
7	NLRP3 Inflammasome Activation in Dialyzed Chronic Kidney Disease Patients. PLoS ONE, 2015, 10, e0122272.	1.1	70
8	A Bioartificial Renal Tubule Device Embedding Human Renal Stem/Progenitor Cells. PLoS ONE, 2014, 9, e87496.	1.1	69
9	Complement component C5a induces aberrant epigenetic modifications in renal tubular epithelial cells accelerating senescence by Wnt4/ \hat{l}^2 catenin signaling after ischemia/reperfusion injury. Aging, 2019, 11, 4382-4406.	1.4	66
10	Renal Cell Carcinoma: A Study through NMR-Based Metabolomics Combined with Transcriptomics. Diseases (Basel, Switzerland), 2016, 4, 7.	1.0	62
11	In a retrospective international study, circulating miR-148b and let-7b were found to be serum markers for detecting primary IgA nephropathy. Kidney International, 2016, 89, 683-692.	2.6	61
12	Role of let-7b in the regulation of $\langle i \rangle N \langle i \rangle$ -acetylgalactosaminyltransferase 2 in IgA nephropathy. Nephrology Dialysis Transplantation, 2015, 30, 1132-1139.	0.4	60
13	Human renal stem/progenitor cells repair tubular epithelial cell injury through TLR2-driven inhibin-A and microvesicle-shuttled decorin. Kidney International, 2013, 83, 392-403.	2.6	57
14	Local synthesis of interferon-alpha in lupus nephritis is associated with type I interferons signature and LMP7 induction in renal tubular epithelial cells. Arthritis Research and Therapy, 2015, 17, 72.	1.6	52
15	AQP5 Is Expressed In Type-B Intercalated Cells in the Collecting Duct System of the Rat, Mouse and Human Kidney. Cellular Physiology and Biochemistry, 2011, 28, 683-692.	1.1	48
16	Activated innate immunity and the involvement of CX3CR1â€"fractalkine in promoting hematuria in patients with IgA nephropathy. Kidney International, 2012, 82, 548-560.	2.6	48
17	Complement Activation During Ischemia/Reperfusion Injury Induces Pericyte-to-Myofibroblast Transdifferentiation Regulating Peritubular Capillary Lumen Reduction Through pERK Signaling. Frontiers in Immunology, 2018, 9, 1002.	2,2	47
18	miR-1915 and miR-1225-5p Regulate the Expression of CD133, PAX2 and TLR2 in Adult Renal Progenitor Cells. PLoS ONE, 2013, 8, e68296.	1.1	46

#	Article	IF	Citations
19	Epigenetic dysregulation in neuroblastoma: A tale of miRNAs and DNA methylation. Biochimica Et Biophysica Acta - Gene Regulatory Mechanisms, 2016, 1859, 1502-1514.	0.9	44
20	The Three-Gene Signature in Urinary Extracellular Vesicles from Patients with Clear Cell Renal Cell Carcinoma. Journal of Cancer, 2016, 7, 1960-1967.	1.2	41
21	Aberrantly methylated DNA regions lead to low activation of CD4+ T-cells in IgA nephropathy. Clinical Science, 2016, 130, 733-746.	1.8	39
22	Role of Toll-Like Receptors in Actuating Stem/Progenitor Cell Repair Mechanisms: Different Functions in Different Cells. Stem Cells International, 2019, 2019, 1-12.	1.2	36
23	CTR2 Identifies a Population of Cancer Cells with Stem Cell-like Features in Patients with Clear Cell Renal Cell Carcinoma. Journal of Urology, 2014, 192, 1831-1841.	0.2	35
24	Renal progenitor cells revert LPSâ€induced endothelialâ€toâ€mesenchymal transition by secreting CXCL6, SAA4, and BPIFA2 antiseptic peptides. FASEB Journal, 2019, 33, 10753-10766.	0.2	35
25	BMP-2 induces a profibrotic phenotype in adult renal progenitor cells through Nox4 activation. American Journal of Physiology - Renal Physiology, 2012, 303, F23-F34.	1.3	33
26	LPS-Binding Protein Modulates Acute Renal Fibrosis by Inducing Pericyte-to-Myofibroblast Trans-Differentiation through TLR-4 Signaling. International Journal of Molecular Sciences, 2019, 20, 3682.	1.8	32
27	A New Vision of IgA Nephropathy: The Missing Link. International Journal of Molecular Sciences, 2020, 21, 189.	1.8	31
28	High levels of gut-homing immunoglobulin A+ B lymphocytes support the pathogenic role of intestinal mucosal hyperresponsiveness in immunoglobulin A nephropathy patients. Nephrology Dialysis Transplantation, 2021, 36, 452-464.	0.4	30
29	Inhibin-A and Decorin Secreted by Human Adult Renal Stem/Progenitor Cells Through the TLR2 Engagement Induce Renal Tubular Cell Regeneration. Scientific Reports, 2017, 7, 8225.	1.6	28
30	Altered monocyte expression and expansion of non-classical monocyte subset in IgA nephropathy patients. Nephrology Dialysis Transplantation, 2015, 30, 1122-1132.	0.4	26
31	Pharmacogenomics: a new paradigm to personalize treatments in nephrology patients. Clinical and Experimental Immunology, 2010, 159, 268-280.	1.1	23
32	Genome-wide scan identifies a copy number variable region at 3p21.1 that influences the TLR9 expression levels in IgA nephropathy patients. European Journal of Human Genetics, 2015, 23, 940-948.	1.4	23
33	Omics studies for comprehensive understanding of immunoglobulin A nephropathy: state-of-the-art and future directions. Nephrology Dialysis Transplantation, 2018, 33, 2101-2112.	0.4	23
34	Early response of gene clusters is associated with mouse lung resistance or sensitivity to cigarette smoke. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2009, 296, L418-L429.	1.3	21
35	Potential Reparative Role of Resident Adult Renal Stem/Progenitor Cells in Acute Kidney Injury. BioResearch Open Access, 2015, 4, 326-333.	2.6	21
36	microRNAs in glomerular diseases from pathophysiology to potential treatment target. Clinical Science, 2015, 128, 775-788.	1.8	20

#	Article	IF	Citations
37	Clinical Application of Human Urinary Extracellular Vesicles in Kidney and Urologic Diseases. International Journal of Molecular Sciences, 2016, 17, 1043.	1.8	20
38	PMMA-Based Continuous Hemofiltration Modulated Complement Activation and Renal Dysfunction in LPS-Induced Acute Kidney Injury. Frontiers in Immunology, 2021, 12, 605212.	2.2	19
39	Extracellular vesicles derived from patients with antibody-mediated rejection induce tubular senescence and endothelial to mesenchymal transition in renal cells. American Journal of Transplantation, 2022, 22, 2139-2157.	2.6	19
40	A transcriptomics study of hereditary angioedema attacks. Journal of Allergy and Clinical Immunology, 2018, 142, 883-891.	1.5	18
41	Potential role of effector memory T cells in chronic T cell-mediated kidney graft rejection. Nephrology Dialysis Transplantation, 2016, 31, 2131-2142.	0.4	17
42	Multiple rare genetic variants coâ€segregating with familial IgA nephropathy all act within a single immuneâ€related network. Journal of Internal Medicine, 2017, 281, 189-205.	2.7	17
43	New findings showing how DNA methylation influences diseases. World Journal of Biological Chemistry, 2019, 10, 1-6.	1.7	17
44	Rifaximin as a Potential Treatment for IgA Nephropathy in a Humanized Mice Model. Journal of Personalized Medicine, 2021, 11, 309.	1.1	15
45	Micropatterning control of tubular commitment in human adult renal stem cells. Biomaterials, 2016, 94, 57-69.	5.7	13
46	Dialysis-related transcriptomic profiling: The pivotal role of heparanase. Experimental Biology and Medicine, 2014, 239, 52-64.	1.1	12
47	A proton nuclear magnetic resonance-based metabolomic approach in IgA nephropathy urinary profiles. Metabolomics, 2013, 9, 740-751.	1.4	11
48	Adult Renal Stem/Progenitor Cells Can Modulate T Regulatory Cells and Double Negative T Cells. International Journal of Molecular Sciences, 2021, 22, 274.	1.8	11
49	Analysis of the Physico-Chemical, Mechanical and Biological Properties of Crosslinked Type-I Collagen from Horse Tendon: Towards the Development of Ideal Scaffolding Material for Urethral Regeneration. Materials, 2021, 14, 7648.	1.3	11
50	Ozone eliminates novel coronavirus Sars-CoV-2 in mucosal samples. New Microbes and New Infections, 2021, 43, 100927.	0.8	10
51	Pentraxin-3-mediated complement activation in a swine model of renal ischemia/reperfusion injury. Aging, 2021, 13, 10920-10933.	1.4	9
52	Severe acute respiratory syndrome coronavirus 2 may exploit human transcription factors involved in retinoic acid and interferon-mediated response: a hypothesis supported by an in silico analysis. New Microbes and New Infections, 2021, 41, 100853.	0.8	9
53	In Vitro Identification of New Transcriptomic and miRNomic Profiles Associated with Pulmonary Fibrosis Induced by High Doses Everolimus: Looking for New Pathogenetic Markers and Therapeutic Targets. International Journal of Molecular Sciences, 2018, 19, 1250.	1.8	8
54	Editorial: Tissue Repair and Regenerative Mechanisms by Stem/Progenitor Cells and Their Secretome. Frontiers in Medicine, 2019, 6, 11.	1.2	8

#	Article	IF	CITATIONS
55	Uridine and pyruvate protect T cells' proliferative capacity from mitochondrial toxic antibiotics: a clinical pilot study. Scientific Reports, 2021, 11, 12841.	1.6	8
56	The Heterogeneity of Renal Stem Cells and Their Interaction with Bio- and Nano-materials. Advances in Experimental Medicine and Biology, 2019, 1123, 195-216.	0.8	6
57	Why stem/progenitor cells lose their regenerative potential. World Journal of Stem Cells, 2021, 13, 1714-1732.	1.3	6
58	Do thermal treatments influence the ultrafast opto-thermal processes of eumelanin?. European Biophysics Journal, 2019, 48, 153-160.	1.2	5
59	Identification and monitoring of Copy Number Variants (CNV) in monoclonal gammopathy. Cancer Biology and Therapy, 2021, 22, 404-412.	1.5	4
60	Toll-Like Receptors in Stem/Progenitor Cells. Handbook of Experimental Pharmacology, 2021, , 175-212.	0.9	3
61	The Icarus Flight of Perinatal Stem and Renal Progenitor Cells Within Immune System. Frontiers in Immunology, 2022, 13, 840146.	2.2	2
62	Growth Arrest-Inducing Genes Are Activated in Dbl-Transformed Mouse Fibroblasts. Gene Expression, 2006, 13, 155-165.	0.5	1
63	SP051EXOSOMAL SHUTTLE RNA IN URINARY EXTRACELLULAR VESICLES AS BIOMARKER OF CLEAR CELL RENAL CELL CARCINOMA. Nephrology Dialysis Transplantation, 2015, 30, iii397-iii397.	0.4	1
64	MicroRNAs in Kidney Diseases. , 2016, , 107-138.		1
65	MP065ABERRANT METHYLATED DNA REGIONS LEAD TO LOW ACTIVATION OF CD4+ T CELLS WITH A CONSEQUENT IMBALANCE OF THE TH1/TH2 POLARIZATION IN IGA NEPHROPATHY PATIENTS. Nephrology Dialysis Transplantation, 2016, 31, i363-i364.	0.4	1
66	SPOO6FAMILY-BASED LINKAGE ANALYSIS AND FULL EXOME SEQUENCING FOR THE IDENTIFICATION OF POTENTIAL RISK VARIANTS IN IGA NEPHROPATHY. Nephrology Dialysis Transplantation, 2015, 30, iii383-iii383.	0.4	0
67	SP054ABNORMAL METHYLATED DNA REGIONS INDICATE AN ATYPICAL RESPONSE OF THE CD4+ T CELLS IN IGA NEPHROPATHY PATIENTS. Nephrology Dialysis Transplantation, 2015, 30, iii398-iii398.	0.4	0
68	MO062RARE GENETIC VARIANTS IMPLICATED IN INNATE AND ADAPTIVE IMMUNITY CO-SEGREGATE WITH FAMILIAL IGA NEPHROPATHY. Nephrology Dialysis Transplantation, 2016, 31, i56-i56.	0.4	0
69	MOO44INHIBIN A AND DECORIN SECRETED BY ADULT RENAL STEM/PROGENITOR CELLS THROUGH THE TLR2 ENGAGEMENT INDUCE RENAL TUBULAR CELL REGENERATION. Nephrology Dialysis Transplantation, 2016, 31, i48-i48.	0.4	0
70	TO007ADULT RENAL STEM/PROGENITOR CELLS EXPRESS LONG NON-CODING RNAS INVOLVED IN WNT AND THE BMP SIGNALING PATHWAY. Nephrology Dialysis Transplantation, 2017, 32, iii80-iii80.	0.4	0
71	MO008LPS BINDING PROTEIN AMPLIFIES TLR-4 SIGNALING AND PERICYTE TO MYOFIBROBLASTS TRANS-DIFFERENTIATION IN LPS-INDUCED ACUTE KIDNEY INJURY. Nephrology Dialysis Transplantation, 2017, 32, iii44-iii44.	0.4	0
72	SP160LPS-MEDIATED RECRUITMENT OF MTOR COMPLEX 1 ENHANCES ENDOTHELIAL DYSFUNCTION IN SEPSIS-INDUCED ACUTE KIDNEY INJURY. Nephrology Dialysis Transplantation, 2017, 32, iii157-iii158.	0.4	0

#	Article	IF	CITATIONS
73	MP067MICRORNA PROFILING USING NEXT-GENERATION SEQUENCING IN RENAL CANCER STEM CELLS: A NEW REGULATORY MECHANISM. Nephrology Dialysis Transplantation, 2017, 32, iii450-iii450.	0.4	O
74	SP168ARPCS CAN REVERT LPS-INDUCED ENDOTHELIAL-TO-MESENCHYMAL TRANSITION OF ENDOTHELIAL CELLS. Nephrology Dialysis Transplantation, 2017, 32, iii160-iii160.	0.4	0
75	FP693RENAL ACUTE AND CHRONIC ANTIBODY-MEDIATED REJECTION (AMR) ACCELERATE THE TUBULAR SENESCENCE INCREASING THE EXPRESSION OF CELL CYCLE NEGATIVE REGULATORS. Nephrology Dialysis Transplantation, 2018, 33, i279-i280.	0.4	0
76	FP189HIGH LEVELS OF INTESTINAL-ACTIVATED IGA+ B LYMPHOCYTES SUPPORT THE PATHOGENIC ROLE OF INTESTINAL MUCOSAL HYPERRESPONSIVENESS IN IGA NEPHROPATHY PATIENTS. Nephrology Dialysis Transplantation, 2019, 34, .	0.4	0
77	FP062Complement activation mediates accelerated tubular and glomerular Inflammaging in Adriamycin (Adr)-Induced FSGS. Nephrology Dialysis Transplantation, 2019, 34, .	0.4	0
78	FPO19Identification of new genes (NRA4A2/NRA43 and LRP1/LRP3) as transcriptional modulators of lipid synthesis and inflammatory response in patients treated with lipoprotein-apheresis (LA). Nephrology Dialysis Transplantation, 2019, 34, .	0.4	0
79	SuO008RENAL PROGENITOR CELLS PROTECT TUBULAR EPITHELIAL CELLS FROM CISPLATIN-INDUCED DAMAGE BY OVER-EXPRESSING THE CYP1B1 GENE. Nephrology Dialysis Transplantation, 2019, 34, .	0.4	0
80	FP069Extracellular Vesicles can mediate tubular inflammaging in Antibody-Mediated Rejection via Cyclin-Dependent Kinase Inhibitors. Nephrology Dialysis Transplantation, 2019, 34, .	0.4	0
81	FP283Continuous Hemodiafiltration with PMMA Hemofilter modulated Complement activation and Tubular Inflammaging in LPS-induced Acute Kidney Injury (AKI). Nephrology Dialysis Transplantation, 2019, 34, .	0.4	0
82	PO531CONTINUOUS HEMODIAFILTRATION WITH PMMA HEMOFILTER MODULATED COMPLEMENT ACTIVATION AND RENAL DYSFUNCTION IN A SWINE MODEL OF SEPSIS-INDUCED ACUTE KIDNEY INJURY. Nephrology Dialysis Transplantation, 2020, 35, .	0.4	0
83	MO005HIGH LEVELS OF FIVE SPECIFIC FECAL METABOLITES IN IGA NEPHROPATHY PATIENTS SUPPORT THE HYPOTHESIS OF THE INTESTINAL-RENAL AXIS CONNECTION. Nephrology Dialysis Transplantation, 2020, 35, .	0.4	0
84	POO21LONG NON-CODING RNAS HOTAIR AND LINCO0511 CAN EXPLAIN HUMAN RENAL STEM/PROGENITOR CELLS CAPACITY TO REPAIR DAMAGE INDUCED BY CISPLATIN. Nephrology Dialysis Transplantation, 2020, 35, .	0.4	0
85	PO691LIPOPROTEIN(A) AS A POTENTIAL RISK FACTOR FOR CARDIOVASCULAR (CV) AND THROMBOTIC EVENTS IN CHRONIC KIDNEY DISEASE (CKD) AND TRANSPLANTED PATIENTS. Nephrology Dialysis Transplantation, 2020, 35, .	0.4	0
86	TO007PLASMA EXTRACELLULAR VESICLES MEDIATE ENDOTHELIAL TO MESENCHYMAL TRANSITION AND TUBULAR SENESCENCE IN RENAL ANTIBODY MEDIATED REJECTION BY COMPLEMENT ACTIVATION. Nephrology Dialysis Transplantation, 2020, 35, .	0.4	0
87	PO517RENAL STEM CELLS (ARPCS) AS A NEPHROPROTECTIVE APPROACH DURING CISPLATIN-INDUCED ACUTE KIDNEY INJURY: A DEFENSE MECHANISM BY EXTRACELLULAR VESICLES CARRYING THE CYP1B1 GENE. Nephrology Dialysis Transplantation, 2020, 35, .	0.4	0
88	High-Dose Everolimus May Induce Pro-Inflammatory/Fibrotic Transcriptomic Changes In Bronchial Epithelial Cells From Cystic Fibrosis Patients Current Pharmacogenomics and Personalized Medicine, 2021, 18, .	0.2	0
89	MicroRNAs in Kidney Diseases. , 2015, , 1-32.		0
90	Why stem/progenitor cells lose their regenerative potential. World Journal of Stem Cells, 2021, 13, 1717-1735.	1.3	0

#	Article	IF	CITATIONS
91	FC023: Human Adult Renal Progenitor Cells Secrete in the Kidney Very High Levels of the Anti-Ageing Protein Klotho Sustained by the Long No-Coding RNA Hotair. Nephrology Dialysis Transplantation, 2022, 37, .	0.4	O
92	MO287: A Recombinant BIO-HDL (CER-001) Can Prevent SARS-COV2-Induced Renal Dysfunction by Restoring SR-BI Signalling. Nephrology Dialysis Transplantation, 2022, 37, .	0.4	0