List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/48528/publications.pdf Version: 2024-02-01

	34493	16186
17,370	54	128
citations	h-index	g-index
142	142	10638
docs citations	times ranked	citing authors
	citations 142	17,370 54 citations h-index 142 142

FEL-FELLIN

#	Article	IF	CITATIONS
1	A simple theory for the modulation of tropical instability waves by ENSO and the annual cycle. Tellus, Series A: Dynamic Meteorology and Oceanography, 2022, 72, 1700087.	0.8	13
2	Dynamics of ENSO Phase–Locking and Its Biases in Climate Models. Geophysical Research Letters, 2022, 49, .	1.5	5
3	Oceanic meridional transports and their roles in warm water volume variability and ENSO in the tropical Pacific. Climate Dynamics, 2022, 59, 245-261.	1.7	4
4	Distinct Surface Warming Response Over the Western and Eastern Equatorial Pacific to Radiative Forcing. Geophysical Research Letters, 2022, 49, .	1.5	9
5	Effective ENSO amplitude forecasts based on oceanic and atmospheric preconditions. Journal of Climate, 2022, , 1-50.	1.2	0
6	MJO Phase Swings Modulate the Recurring Latitudinal Shifts of the 2020 Extreme Summerâ€Monsoon Rainfall Around Yangtse. Journal of Geophysical Research D: Atmospheres, 2022, 127, .	1.2	7
7	ENSO Diversity Simulated in a Revised Cane-Zebiak Model. Frontiers in Earth Science, 2022, 10, .	0.8	2
8	Global decline in ocean memory over the 21st century. Science Advances, 2022, 8, eabm3468.	4.7	20
9	Future Amplification of Sea Surface Temperature Seasonality Due To Enhanced Ocean Stratification. Geophysical Research Letters, 2022, 49, .	1.5	8
10	Equatorial Origin of the Observed Tropical Pacific Quasiâ€Decadal Variability From ENSO Nonlinearity. Geophysical Research Letters, 2022, 49, .	1.5	5
11	Toward Understanding El Niño Southern-Oscillation's Spatiotemporal Pattern Diversity. Frontiers in Earth Science, 2022, 10, .	0.8	4
12	Exceptionally Persistent Maddenâ€Julian Oscillation Activity Contributes to the Extreme 2020 East Asian Summer Monsoon Rainfall. Geophysical Research Letters, 2021, 48, e2020GL091588.	1.5	38
13	Improving the MJO Forecast of S2S Operation Models by Correcting Their Biases in Linear Dynamics. Geophysical Research Letters, 2021, 48, e2020GL091930.	1.5	11
14	Simulations of ENSO Phase-Locking in CMIP5 and CMIP6. Journal of Climate, 2021, 34, 5135-5149.	1.2	24
15	Decadal Modulation of the ENSO–Indian Ocean Basin Warming Relationship during the Decaying Summer by the Interdecadal Pacific Oscillation. Journal of Climate, 2021, 34, 2685-2699.	1.2	14
16	Spurious North Tropical Atlantic precursors to El Niño. Nature Communications, 2021, 12, 3096.	5.8	33
17	On the Breakdown of ENSO's Relationship With Thermocline Depth in the Centralâ€Equatorial Pacific. Geophysical Research Letters, 2021, 48, e2020GL092335.	1.5	12
18	Changing El Niño–Southern Oscillation in a warming climate. Nature Reviews Earth & Environment, 2021, 2, 628-644.	12.2	197

#	Article	IF	CITATIONS
19	Mode of Precipitation Variability Generated by Coupling of ENSO With Seasonal Cycle in the Tropical Pacific. Geophysical Research Letters, 2021, 48, e2021GL095204.	1.5	2
20	ENSO Dynamics in the E3SM-1-0, CESM2, and GFDL-CM4 Climate Models. Journal of Climate, 2021, , 1-59.	1.2	10
21	El Niño Pacing Orchestrates Interâ€Basin Pacificâ€Indian Ocean Interannual Connections. Geophysical Research Letters, 2021, 48, e2021GL095242.	1.5	6
22	North Atlantic as a Trigger for Pacificâ€Wide Decadal Climate Change. Geophysical Research Letters, 2021, 48, e2021GL094719.	1.5	12
23	Understanding Lead Times of Warmâ€Waterâ€Volumes to ENSO Sea Surface Temperature Anomalies. Geophysical Research Letters, 2021, 48, e2021GL094366.	1.5	7
24	Tropical Indoâ€Pacific Compounding Thermal Conditions Drive the 2019 Australian Extreme Drought. Geophysical Research Letters, 2021, 48, e2020GL090323.	1.5	18
25	On the influence of ENSO complexity on Pan-Pacific coastal wave extremes. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	3.3	10
26	The Phaseâ€Locking of Tropical North Atlantic and the Contribution of ENSO. Geophysical Research Letters, 2021, 48, e2021GL095610.	1.5	4
27	Meridional migration of ENSO impact on tropical Atlantic precipitation controlled by the seasonal cycle. Geophysical Research Letters, 2021, 48, e2021GL096365.	1.5	1
28	Fundamental Behavior of ENSO Phase Locking. Journal of Climate, 2020, 33, 1953-1968.	1.2	43
29	A Concise and Effective Expression Relating Subsurface Temperature to the Thermocline in the Equatorial Pacific. Geophysical Research Letters, 2020, 47, e2020GL087848.	1.5	3
30	Maintenance of mid-latitude oceanic fronts by mesoscale eddies. Science Advances, 2020, 6, eaba7880.	4.7	39
31	On the Interdecadal Variation of the Warm Water Volume in the Tropical Pacific Around 1999/2000. Journal of Geophysical Research D: Atmospheres, 2020, 125, e2020JD033306.	1.2	12
32	Summertime stationary waves integrate tropical and extratropical impacts on tropical cyclone activity. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 22720-22726.	3.3	17
33	Dynamics for El Niño-La Niña asymmetry constrain equatorial-Pacific warming pattern. Nature Communications, 2020, 11, 4230.	5.8	40
34	Modulation of the Relationship between ENSO and Its Combination Mode by the Atlantic Multidecadal Oscillation. Journal of Climate, 2020, 33, 4679-4695.	1.2	21
35	Delineating the Seasonally Modulated Nonlinear Feedback Onto ENSO From Tropical Instability Waves. Geophysical Research Letters, 2020, 47, e2019GL085863.	1.5	14
36	Strong remote control of future equatorial warming by off-equatorial forcing. Nature Climate Change, 2020, 10, 124-129.	8.1	32

#	Article	IF	CITATIONS
37	Improved Predictability of the Indian Ocean Dipole Using a Stochastic Dynamical Model Compared to the North American Multimodel Ensemble Forecast. Weather and Forecasting, 2020, 35, 379-399.	0.5	10
38	Decadal Change of Combination Mode Spatiotemporal Characteristics due to an ENSO Regime Shift. Journal of Climate, 2020, 33, 5239-5251.	1.2	7
39	Interhemispheric influence of Indo-Pacific convection oscillation on Southern Hemisphere rainfall through southward propagation of Rossby waves. Climate Dynamics, 2019, 52, 3203-3221.	1.7	31
40	Improved Predictability of the Indian Ocean Dipole Using Seasonally Modulated ENSO Forcing Forecasts. Geophysical Research Letters, 2019, 46, 9980-9990.	1.5	39
41	Effect of El Niño on the response ratio of Hadley circulation to different SST meridional structures. Climate Dynamics, 2019, 53, 3877-3891.	1.7	17
42	Pacific Meridional Modeâ€Western North Pacific Tropical Cyclone Linkage Explained by Tropical Pacific Quasiâ€Decadal Variability. Geophysical Research Letters, 2019, 46, 13346-13354.	1.5	24
43	Recent Acceleration of Arabian Sea Warming Induced by the Atlanticâ€Western Pacific Transâ€basin Multidecadal Variability. Geophysical Research Letters, 2019, 46, 1662-1671.	1.5	59
44	ENSO Regime Changes Responsible for Decadal Phase Relationship Variations Between ENSO Sea Surface Temperature and Warm Water Volume. Geophysical Research Letters, 2019, 46, 7546-7553.	1.5	20
45	Different Effects of Two ENSO Types on Arctic Surface Temperature in Boreal Winter. Journal of Climate, 2019, 32, 4943-4961.	1.2	18
46	Modulation of tropical cyclones in the southeastern part of western North Pacific by tropical Pacific decident decadal variability. Climate Dynamics, 2019, 53, 4475-4488.	1.7	13
47	Seasonality and El Niño Diversity in the Relationship between ENSO and Western North Pacific Tropical Cyclone Activity. Journal of Climate, 2019, 32, 8021-8045.	1.2	17
48	Impact of ENSO longitudinal position on teleconnections to the NAO. Climate Dynamics, 2019, 52, 257-274.	1.7	65
49	A Coupled Dynamic Index for ENSO Periodicity. Journal of Climate, 2018, 31, 2361-2376.	1.2	32
50	A New Method for Interpreting Nonstationary Running Correlations and Its Application to the ENSOâ€EAWM Relationship. Geophysical Research Letters, 2018, 45, 327-334.	1.5	18
51	Two Leading ENSO Modes and El Niño Types in the Zebiak–Cane Model. Journal of Climate, 2018, 31, 1943-1962.	1.2	47
52	A Comparison of the Response of the Hadley Circulation to Different Tropical SST Meridional Structures During the Equinox Seasons. Journal of Geophysical Research D: Atmospheres, 2018, 123, 2591-2604.	1.2	12
53	Contrasting Local and Remote Impacts of Surface Heating on Polar Warming and Amplification. Journal of Climate, 2018, 31, 3155-3166.	1.2	33
54	Dynamical diagnostics of the SST annual cycle in the eastern equatorial Pacific: partÂl a linear coupled framework. Climate Dynamics, 2018, 50, 1841-1862.	1.7	6

#	Article	IF	CITATIONS
55	Polar amplification dominated by local forcing and feedbacks. Nature Climate Change, 2018, 8, 1076-1081.	8.1	216
56	El Niño–Southern Oscillation complexity. Nature, 2018, 559, 535-545.	13.7	702
57	Relationship between the Hadley Circulation and Different Tropical Meridional SST Structures during Boreal Summer. Journal of Climate, 2018, 31, 6575-6590.	1.2	14
58	Decadal modulation of the ENSO–East Asian winter monsoon relationship by the Atlantic Multidecadal Oscillation. Climate Dynamics, 2017, 49, 2531-2544.	1.7	51
59	Dynamics of upwelling annual cycle in the equatorial Atlantic Ocean. Geophysical Research Letters, 2017, 44, 3737-3743.	1.5	12
60	Revisiting ENSO/Indian Ocean Dipole phase relationships. Geophysical Research Letters, 2017, 44, 2481-2492.	1.5	168
61	Airâ€sea fluxes for <scp>H</scp> urricane <scp>P</scp> atricia (2015): Comparison with supertyphoon <scp>H</scp> aiyan (2013) and under different <scp>ENSO</scp> conditions. Journal of Geophysical Research: Oceans, 2017, 122, 6076-6089.	1.0	19
62	Dynamics of simulated <scp>A</scp> tlantic upwelling annual cycle in <scp>CMIP</scp> 5 models. Journal of Geophysical Research: Oceans, 2017, 122, 5774-5785.	1.0	7
63	The responses of the Hadley circulation to different meridional SST structures in the seasonal cycle. Journal of Geophysical Research D: Atmospheres, 2017, 122, 7785-7799.	1.2	13
64	Subsurface Nonlinear Dynamical Heating and ENSO Asymmetry. Geophysical Research Letters, 2017, 44, 12,427.	1.5	25
65	Asymmetric evolution of El Niño and La Niña: the recharge/discharge processes and role of the off-equatorial sea surface height anomaly. Climate Dynamics, 2017, 49, 2737-2748.	1.7	30
66	Dynamical diagnostics of the SST annual cycle in the eastern equatorial Pacific: PartÂll analysis of CMIP5 simulations. Climate Dynamics, 2017, 49, 3923-3936.	1.7	5
67	Western tropical Pacific multidecadal variability forced by the Atlantic multidecadal oscillation. Nature Communications, 2017, 8, 15998.	5.8	202
68	Common Warming Pattern Emerges Irrespective of Forcing Location. Journal of Advances in Modeling Earth Systems, 2017, 9, 2413-2424.	1.3	11
69	Reply to "Comments on â€~Combination Mode Dynamics of the Anomalous Northwest Pacific Anticyclone'â€*. Journal of Climate, 2016, 29, 4695-4706.	1.2	9
70	Different controls of tropical cyclone activity in the Eastern Pacific for two types of El Niño. Geophysical Research Letters, 2016, 43, 1679-1686.	1.5	15
71	Influence of Oceanic Intraseasonal Kelvin Waves on Eastern Pacific Hurricane Activity. Journal of Climate, 2016, 29, 7941-7955.	1.2	11
72	Modes of hurricane activity variability in the eastern Pacific: Implications for the 2016 season. Geophysical Research Letters, 2016, 43, 11,358.	1.5	9

#	Article	IF	CITATIONS
73	Unraveling El Niño's impact on the East Asian Monsoon and Yangtze River summer flooding. Geophysical Research Letters, 2016, 43, 11,375.	1.5	125
74	Contrasting Responses of the Hadley Circulation to Equatorially Asymmetric and Symmetric Meridional Sea Surface Temperature Structures. Journal of Climate, 2016, 29, 8949-8963.	1.2	30
75	A New Understanding of El Niño's Impact over East Asia: Dominance of the ENSO Combination Mode. Journal of Climate, 2016, 29, 4347-4359.	1.2	67
76	Impact of different El Niño types on the El Niño/IOD relationship. Geophysical Research Letters, 2015, 42, 8570-8576.	1.5	110
77	The Annual-Cycle Modulation of Meridional Asymmetry in ENSO's Atmospheric Response and Its Dependence on ENSO Zonal Structure. Journal of Climate, 2015, 28, 5795-5812.	1.2	44
78	An Improved Atmospheric Component of Zebiak-Cane Model for Simulating ENSO Winds. Journal of the Meteorological Society of Japan, 2015, 93, 535-550.	0.7	4
79	Tropospheric Biennial Oscillation (TBO) indistinguishable from white noise. Geophysical Research Letters, 2015, 42, 7785-7791.	1.5	15
80	Understanding ENSO Diversity. Bulletin of the American Meteorological Society, 2015, 96, 921-938.	1.7	745
81	Combination Mode Dynamics of the Anomalous Northwest Pacific Anticyclone*. Journal of Climate, 2015, 28, 1093-1111.	1.2	169
82	The response of ENSO flavors to midâ€Holocene climate: Implications for proxy interpretation. Paleoceanography, 2015, 30, 527-547.	3.0	75
83	El Niñoâ^'Southern Oscillation frequency cascade. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 13490-13495.	3.3	46
84	ENSO and greenhouse warming. Nature Climate Change, 2015, 5, 849-859.	8.1	596
85	ENSO Seasonal Synchronization Theory. Journal of Climate, 2014, 27, 5285-5310.	1.2	85
86	ENSO stability in coupled climate models and its association with mean state. Climate Dynamics, 2014, 42, 3313-3321.	1.7	112
87	Increasing frequency of extreme El Niño events due to greenhouse warming. Nature Climate Change, 2014, 4, 111-116.	8.1	1,572
88	Recent Walker circulation strengthening and Pacific cooling amplified by Atlantic warming. Nature Climate Change, 2014, 4, 888-892.	8.1	480
89	Response of El Niño sea surface temperature variability to greenhouse warming. Nature Climate Change, 2014, 4, 786-790.	8.1	147
90	Increasing autumn drought over southern China associated with ENSO regime shift. Geophysical Research Letters, 2014, 41, 4020-4026.	1.5	164

#	Article	IF	CITATIONS
91	Recharge Oscillator Mechanisms in Two Types of ENSO. Journal of Climate, 2013, 26, 6506-6523.	1.2	154
92	Zonal phase propagation of ENSO sea surface temperature anomalies: Revisited. Geophysical Research Letters, 2013, 40, 4048-4053.	1.5	13
93	A combination mode of the annual cycle and the ElÂNiño/Southern Oscillation. Nature Geoscience, 2013, 6, 540-544.	5.4	224
94	On the Bias in Simulated ENSO SSTA Meridional Widths of CMIP3 Models. Journal of Climate, 2013, 26, 3173-3186.	1.2	45
95	Weakened Interannual Variability in the Tropical Pacific Ocean since 2000. Journal of Climate, 2013, 26, 2601-2613.	1.2	132
96	NAO implicated as a predictor of Northern Hemisphere mean temperature multidecadal variability. Geophysical Research Letters, 2013, 40, 5497-5502.	1.5	240
97	ENSO Regime Change since the Late 1970s as Manifested by Two Types of ENSO. Journal of the Meteorological Society of Japan, 2013, 91, 835-842.	0.7	37
98	Improvements in the CMIP5 simulations of ENSO‧STA meridional width. Geophysical Research Letters, 2012, 39, .	1.5	38
99	Differences in Teleconnection over the North Pacific and Rainfall Shift over the USA Associated with Two Types of El Niño during Boreal Autumn. Journal of the Meteorological Society of Japan, 2012, 90, 535-552.	0.7	46
100	Niño indices for two types of ENSO. Geophysical Research Letters, 2011, 38, n/a-n/a.	1.5	330
101	Contrasting Impacts of Two-Type El Nino over the Western North Pacific during Boreal Autumn. Journal of the Meteorological Society of Japan, 2011, 89, 563-569.	0.7	124
102	An ENSO stability analysis. Part I: results from a hybrid coupled model. Climate Dynamics, 2011, 36, 1593-1607.	1.7	65
103	A comparison of climatological subseasonal variations in the wintertime storm track activity between the North Pacific and Atlantic: local energetics and moisture effect. Climate Dynamics, 2011, 37, 2455-2469.	1.7	32
104	Warm Pool and Cold Tongue El Niño Events as Simulated by the GFDL 2.1 Coupled GCM. Journal of Climate, 2010, 23, 1226-1239.	1.2	189
105	Noise-Induced Instability in the ENSO Recharge Oscillator. Journals of the Atmospheric Sciences, 2010, 67, 529-542.	0.6	74
106	Seasonal Synchronization of ENSO Events in a Linear Stochastic Model*. Journal of Climate, 2010, 23, 5629-5643.	1.2	61
107	Interaction between El Niño and Extreme Indian Ocean Dipole. Journal of Climate, 2010, 23, 726-742.	1.2	274
108	El Niño in a changing climate. Nature, 2009, 461, 511-514.	13.7	1,325

#	Article	IF	CITATIONS
109	Two Types of El Niño Events: Cold Tongue El Niño and Warm Pool El Niño. Journal of Climate, 2009, 22, 1499-1515.	1.2	1,137
110	Spatial and temporal features of ENSO meridional scales. Geophysical Research Letters, 2009, 36, .	1.5	40
111	Stateâ \in dependent atmospheric noise associated with ENSO. Geophysical Research Letters, 2008, 35, .	1.5	52
112	Coexistence of Equatorial Coupled Modes of ENSO*. Journal of Climate, 2008, 21, 3051-3067.	1.2	79
113	Ensemble-mean dynamics of the ENSO recharge oscillator under state-dependent stochastic forcing. Geophysical Research Letters, 2007, 34, .	1.5	120
114	A coupled-stability index for ENSO. Geophysical Research Letters, 2006, 33, .	1.5	231
115	Preconditions for El Niño and La Niña onsets and their relation to the Indian Ocean. Geophysical Research Letters, 2005, 32, .	1.5	57
116	The simplest ENSO recharge oscillator. Geophysical Research Letters, 2005, 32, .	1.5	110
117	Nonlinearity and Asymmetry of ENSO*. Journal of Climate, 2004, 17, 2399-2412.	1.2	395
118	A near-annual coupled ocean-atmosphere mode in the equatorial Pacific ocean. Geophysical Research Letters, 2003, 30, .	1.5	32
119	Strong El Niño events and nonlinear dynamical heating. Geophysical Research Letters, 2003, 30, 20-1.	1.5	258
120	A Nonlinear Theory for El Ni $ ilde{A}$ ±o Bursting. Journals of the Atmospheric Sciences, 2003, 60, 152-165.	0.6	127
121	A Tropical Ocean Recharge Mechanism for Climate Variability. Part II: A Unified Theory for Decadal and ENSO Modes. Journal of Climate, 2003, 16, 3599-3616.	1.2	23
122	A Tropical Ocean Recharge Mechanism for Climate Variability. Part I: Equatorial Heat Content Changes Induced by the Off-Equatorial Wind. Journal of Climate, 2003, 16, 3585-3598.	1.2	27
123	A Moist Linear Baroclinic Model: Coupled Dynamical–Convective Response to El Niño. Journal of Climate, 2003, 16, 1121-1139.	1.2	111
124	Phytoplankton influences on tropical climate. Geophysical Research Letters, 2002, 29, 19-1-19-4.	1.5	73
125	A Nonlinear Mechanism for Decadal El NiñO Amplitude Changes. Geophysical Research Letters, 2002, 29, 3-1.	1.5	104
126	Role of Indian Ocean warming in the development of Philippine Sea anticyclone during ENSO. Geophysical Research Letters, 2002, 29, 116-1-116-4.	1.5	169

#	Article	IF	CITATIONS
127	A Systematic Approximation of the SST Anomaly Equation for ENSO Journal of the Meteorological Society of Japan, 2001, 79, 1-10.	0.7	73
128	Low-Frequency Modes of Tropical Ocean Dynamics*. Journal of Climate, 2001, 14, 3874-3881.	1.2	72
129	Collective Role of Thermocline and Zonal Advective Feedbacks in the ENSO Mode*. Journal of Climate, 2001, 14, 3421-3432.	1.2	155
130	An eigen analysis of the interdecadal changes in the structure and frequency of ENSO mode. Geophysical Research Letters, 2000, 27, 2573-2576.	1.5	90
131	Thermocline and Zonal Advective Feedbacks Within the Equatorial Ocean Recharge Oscillator Model for ENSO. Geophysical Research Letters, 1999, 26, 2989-2992.	1.5	187
132	The Role of Zonal Advection Feedback in Phase Transition and Growth of ENSO in the Cane-Zebiak Model. Journal of the Meteorological Society of Japan, 1999, 77, 1151-1160.	0.7	54
133	ENSO theory. Journal of Geophysical Research, 1998, 103, 14261-14290.	3.3	809
134	An Equatorial Ocean Recharge Paradigm for ENSO. Part II: A Stripped-Down Coupled Model. Journals of the Atmospheric Sciences, 1997, 54, 830-847.	0.6	392
135	An Equatorial Ocean Recharge Paradigm for ENSO. Part I: Conceptual Model. Journals of the Atmospheric Sciences, 1997, 54, 811-829.	0.6	1,254
136	A Theory of Interdecadal Climate Variability of the North Pacific Ocean–Atmosphere System*. Journal of Climate, 1997, 10, 1821-1835.	1.2	151
137	Antarctic circumpolar waves: An Indication of ocean-atmosphere coupling in the extratropics. Geophysical Research Letters, 1997, 24, 2585-2588.	1.5	46
138	Modes of Interannual Tropical Ocean–Atmosphere Interaction—a Unified View. Part I: Numerical Results. Journals of the Atmospheric Sciences, 1993, 50, 3477-3503.	0.6	203