
Suzushi Nishimura

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4852704/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Standing Wave Enhancement of Red Absorbance and Photocurrent in Dye-Sensitized Titanium Dioxide Photoelectrodes Coupled to Photonic Crystals. Journal of the American Chemical Society, 2003, 125, 6306-6310.	13.7	564
2	Light extraction from organic light-emitting diodes enhanced by spontaneously formed buckles. Nature Photonics, 2010, 4, 222-226.	31.4	538
3	Electro-tunable optical diode based on photonic bandgap liquid-crystal heterojunctions. Nature Materials, 2005, 4, 383-387.	27.5	296
4	Fabrication of a simultaneous red–green–blue reflector using single-pitched cholesteric liquid crystals. Nature Materials, 2008, 7, 43-47.	27.5	207
5	Fabrication of two-dimensional photonic crystals using interference lithography and electrodeposition of CdSe. Applied Physics Letters, 2001, 79, 3392-3394.	3.3	120
6	Defect-Mode Lasing with Lowered Threshold in a Three-Layered Hetero-Cholesteric Liquid-Crystal Structure. Advanced Materials, 2006, 18, 193-197.	21.0	100
7	Direct fabrication of two-dimensional titania arrays using interference photolithography. Applied Physics Letters, 2001, 79, 3332-3334.	3.3	67
8	Clinical application of an active electrode using an operational amplifier. IEEE Transactions on Biomedical Engineering, 1992, 39, 1096-1099.	4.2	60
9	Highly circularly polarized electroluminescence from organic light-emitting diodes with wide-band reflective polymeric cholesteric liquid crystal films. Applied Physics Letters, 2007, 90, 211106.	3.3	58
10	Broadband Cavityâ€Mode Lasing from Dyeâ€Doped Nematic Liquid Crystals Sandwiched by Broadband Cholesteric Liquid Crystal Bragg Reflectors. Advanced Materials, 2010, 22, 2680-2684.	21.0	58
11	Enhancement of normally directed light outcoupling from organic light-emitting diodes using nanoimprinted low-refractive-index layer. Applied Physics Letters, 2008, 92, .	3.3	56
12	Fabrication technique for filling-factor tunable titanium dioxide colloidal crystal replicas. Applied Physics Letters, 2002, 81, 4532-4534.	3.3	49
13	Polarization Conversion in Surfaceâ€Plasmonâ€Coupled Emission from Organic Lightâ€Emitting Diodes Using Spontaneously Formed Buckles. Advanced Materials, 2011, 23, 1003-1007.	21.0	49
14	Defect mode lasing from a double-layered dye-doped polymeric cholesteric liquid crystal films with a thin rubbed defect layer. Applied Physics Letters, 2007, 90, 261108.	3.3	41
15	Photoinduced circular anisotropy in a photochromicW-shaped-molecule-doped polymeric liquid crystal film. Physical Review E, 2006, 73, 021702.	2.1	40
16	Electrotunable Non-reciprocal Laser Emission from a Liquid-Crystal Photonic Device. Advanced Functional Materials, 2006, 16, 1793-1798.	14.9	39
17	Lowâ€Cost, Organic Lightâ€Emitting Electrochemical Cells with Massâ€Producible Nanoimprinted Substrates Made Using Rollâ€ŧoâ€Roll Methods. Advanced Materials Technologies, 2017, 2, 1600293.	5.8	38
18	Simultaneous Red, Green, and Blue Lasing Emissions in a Singleâ€Pitched Cholesteric Liquidâ€Crystal System. Advanced Materials, 2008, 20, 2503-2507.	21.0	37

Suzushi Nishimura

#	Article	IF	CITATIONS
19	Low threshold lasing from dye-doped cholesteric liquid crystal multi-layered structures. Optics Express, 2010, 18, 12909.	3.4	36
20	Enhancement of Light Extraction from Organic Light-Emitting Diodes with Two-Dimensional Hexagonally Nanoimprinted Periodic Structures Using Sequential Surface Relief Grating. Japanese Journal of Applied Physics, 2008, 47, 4566-4571.	1.5	35
21	White Polymer Light-Emitting Electrochemical Cells Fabricated Using Energy Donor and Acceptor Fluorescent ÏE-Conjugated Polymers Based on Concepts of Band-Structure Engineering. Journal of Physical Chemistry C, 2015, 119, 28701-28710.	3.1	34
22	Monodomain Film Formation and Lasing in Dye-Doped Polymer Cholesteric Liquid Crystals. Japanese Journal of Applied Physics, 2004, 43, 6142-6144.	1.5	29
23	Simple electro-tunable optical diode using photonic and anisotropic liquid crystal films. Thin Solid Films, 2006, 509, 49-52.	1.8	28
24	Polarization characteristics of phase retardation defect mode lasing in polymeric cholesteric liquid crystals. Science and Technology of Advanced Materials, 2004, 5, 437-441.	6.1	27
25	Defect-Mode Lasing from a Three-Layered Helical Cholesteric Liquid Crystal Structure. Japanese Journal of Applied Physics, 2007, 46, 3510-3513.	1.5	23
26	Lasing from Thick Anisotropic Layer Sandwiched between Polymeric Cholesteric Liquid Crystal Films. Japanese Journal of Applied Physics, 2005, 44, 8165-8167.	1.5	22
27	Controlling bucking structure by UV/ozone treatment for light extraction from organic light emitting diodes. Organic Electronics, 2011, 12, 1177-1183.	2.6	20
28	Polymerâ€Based Whiteâ€Lightâ€Emitting Electrochemical Cells with Very High Colorâ€Rendering Index Based on Blueâ€Green Fluorescent Polyfluorenes and Redâ€Phosphorescent Iridium Complexes. ChemPlusChem, 2018, 83, 463-469.	2.8	19
29	White polymer light-emitting electrochemical cells using emission from exciplexes with long intermolecular distances formed between polyfluorene and π-conjugated amine molecules. Journal of Applied Physics, 2015, 118, .	2.5	18
30	Lowering the Lasing Threshold by Introducing Cholesteric Liquid Crystal Films to Dye-Doped Cholesteric Liquid Crystal Cell Surfaces. Japanese Journal of Applied Physics, 2005, 44, 7966-7971.	1.5	17
31	Ag nanocluster-based color converters for white organic light-emitting devices. Journal of Applied Physics, 2017, 122, .	2.5	15
32	Optical cavity with a double-layered cholesteric liquid crystal mirror and its prospective application to solid state laser. Applied Physics Letters, 2006, 89, 241116.	3.3	14
33	Color―and Reflectanceâ€Tunable Multiple Reflectors Assembled from Three Polymer Films. Advanced Materials, 2010, 22, 1617-1621.	21.0	14
34	Sharply directed emission in microcavity organic light-emitting diodes with a cholesteric liquid crystal film. Optics Communications, 2007, 273, 167-172.	2.1	13
35	Analysis of Cavityâ€Mode Lasing Characteristics from a Resonator with Broadband Cholesteric Liquidâ€Crystal Bragg Reflectors. Advanced Functional Materials, 2011, 21, 3430-3438.	14.9	13
36	High-color-rendering-index white polymer light-emitting electrochemical cells based on ionic host-guest systems: Utilization of blend films of blue-fluorescent cationic polyfluorenes and red-phosphorescent cationic iridium complexes. Organic Electronics, 2017, 51, 168-172.	2.6	13

Suzushi Nishimura

#	Article	IF	CITATIONS
37	Enhancement of Laser Emission Intensity in Dye-Doped Cholesteric Liquid Crystals with Single-Output Window. Japanese Journal of Applied Physics, 2005, 44, 3748-3750.	1.5	11
38	Effect of π-Conjugated Polyelectrolyte on Performance of White Polymer Light-Emitting Diodes Based on Excitons and Exciplexes Having Long Intermolecular Distances. Journal of Physical Chemistry C, 2016, 120, 13976-13986.	3.1	10
39	Development of Liquid Crystalline Polymer Film "Nisseki LC Film―for Viewing Angle Compensation of Various LCD Modes. Molecular Crystals and Liquid Crystals, 2006, 458, 35-43.	0.9	9
40	Spontaneously Buckled Microlens for Improving Outcoupled Organic Electroluminescence. Applied Physics Express, 2010, 3, 082501.	2.4	9
41	Polarization-independent multiple selective reflections from bichiral liquid crystal films. Applied Physics Letters, 2010, 96, 153301.	3.3	9
42	Color-temperature tunable white reflector using bichiral liquid crystal films. Optics Express, 2010, 18, 26339.	3.4	8
43	Anomalously Directed Amplified Spontaneous Emission from a Wedge-Shaped Cell Sandwiched by Cholesteric Liquid Crystal Films. Japanese Journal of Applied Physics, 2004, 43, L1220-L1222.	1.5	6
44	Polarization-tunable electroluminescence using phase retardation based on photonic bandgap liquid crystal. Journal of Applied Physics, 2008, 103, 113101.	2.5	6
45	Simultaneous Extraction of Indium Tin Oxide/Organic and Substrate Waveguide Modes from Buckled Organic Light Emitting Diodes. Applied Physics Express, 2011, 4, 032101.	2.4	5
46	Viewing angle compensation of various LCD modes by using a liquid crystalline polymer film Nisseki LC film. , 2006, , .		4
47	51.1:Invited Paper: Viewing-Angle Compensation of TN- and ECB-LCD Modes by Using a Rod-Like Liquid Crystalline Polymer Film. Digest of Technical Papers SID International Symposium, 2007, 38, 1555-1558.	0.3	4
48	Enhanced linearly polarized lasing emission from nanoimprinted surface-emitting distributed feedback laser based on polymeric liquid crystals. Applied Physics Letters, 2008, 93, 221101.	3.3	4
49	White Emission from Exciplex-Based Polymer Light-Emitting Electrochemical Cells. , 2017, , 267-286.		4
50	Pâ€127: Highly Efficient Light Extraction Technologies Applicable for Transparent OLED Lighting using a Corrugated Substrate. Digest of Technical Papers SID International Symposium, 2015, 46, 1643-1646.	0.3	3
51	Pâ€152: Highly Efficient Lightâ€Extraction Technologies for OLED Lighting Coupled to Corrugated Substrates and Designed Lens Arrays. Digest of Technical Papers SID International Symposium, 2014, 45, 1554-1557.	0.3	2
52	Fabrication of White Light-emitting Electrochemical Cells with Stable Emission from Exciplexes. Journal of Visualized Experiments, 2016, , .	0.3	2
53	Nonlinear liquid crystals in periodic structures. , 2001, , .		1
54	Viewingâ€angle compensation of TN―and ECBâ€LCD modes by using a rodâ€like liquidâ€crystalline polymer fi	lm. _{2.1}	1

Journal of the Society for Information Display, 2008, 16, 257-263.

#	Article	IF	CITATIONS
55	Printed Electronics: Low-Cost, Organic Light-Emitting Electrochemical Cells with Mass-Producible Nanoimprinted Substrates Made Using Roll-to-Roll Methods (Adv. Mater. Technol. 5/2017). Advanced Materials Technologies, 2017, 2, .	5.8	1
56	Optical Properties of Diffusion-Type Cholesteric Liquid Crystalline Polymer Film. Molecular Crystals and Liquid Crystals, 2001, 364, 469-478.	0.3	0
57	Viewing angle compensation of various LCD modes by using a liquid crystalline polymer film. Proceedings of SPIE, 2013, , .	0.8	Ο