Maia Kivisaar

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4852697/publications.pdf

Version: 2024-02-01

279798 315739 1,712 60 23 38 citations h-index g-index papers 62 62 62 1439 citing authors all docs docs citations times ranked

#	Article	IF	CITATIONS
1	Sequence of the gene (pheA) encoding phenol monooxygenase from Pseudomonas sp. EST1001: expression in Escherichia coli and Pseudomonas putida. Gene, 1991, 102, 13-18.	2.2	105
2	Simultaneous Degradation of Atrazine and Phenol by Pseudomonas sp. Strain ADP: Effects of Toxicity and Adaptation. Applied and Environmental Microbiology, 2004, 70, 1907-1912.	3.1	104
3	Involvement of Ï, ^S in Starvation-Induced Transposition of <i>Pseudomonas putida</i> Transposon Tn <i>4652</i> Journal of Bacteriology, 2001, 183, 5445-5448.	2.2	97
4	Stationary phase mutagenesis: mechanisms that accelerate adaptation of microbial populations under environmental stress. Environmental Microbiology, 2003, 5, 814-827.	3.8	72
5	Selection of independent plasmids determining phenol degradation inPseudomonas putida and the cloning and expression of genes encoding phenol monooxygenase and catechol 1,2-dioxygenase. Plasmid, 1990, 24, 25-36.	1.4	67
6	Involvement of Error-Prone DNA Polymerase IV in Stationary-Phase Mutagenesis in Pseudomonas putida. Journal of Bacteriology, 2004, 186, 2735-2744.	2.2	62
7	Freeing <scp><i>P</i></scp> <i>seudomonas putida</i> â€ <scp>KT</scp> 2440 of its proviral load strengthens endurance to environmental stresses. Environmental Microbiology, 2015, 17, 76-90.	3.8	62
8	Sequence of the plasmid-encoded catechol 1,2-dioxygenase-expressing gene, pheB, of phenol-degrading Pseudomonas sp. strain EST1001. Gene, 1991, 98, 15-20.	2.2	60
9	Identification and Characterization of IS 1411, a New Insertion Sequence Which Causes Transcriptional Activation of the Phenol Degradation Genes in Pseudomonas putida. Journal of Bacteriology, 1998, 180, 5306-5312.	2.2	59
10	The ColRS Two-Component System Regulates Membrane Functions and Protects Pseudomonas putida against Phenol. Journal of Bacteriology, 2006, 188, 8109-8117.	2.2	53
11	The ColR-ColS two-component signal transduction system is involved in regulation of Tn4652 transposition in Pseudomonas putida under starvation conditions. Molecular Microbiology, 2004, 54, 795-807.	2.5	50
12	Expression of the Transposase Gene tnpA of Tn 4652 Is Positively Affected by Integration Host Factor. Journal of Bacteriology, 1998, 180, 2822-2829.	2.2	49
13	Different Spectra of Stationary-Phase Mutations in Early-Arising versus Late-Arising Mutants of <i>Pseudomonas putida</i> : Involvement of the DNA Repair Enzyme MutY and the Stationary-Phase Sigma Factor RpoS. Journal of Bacteriology, 2002, 184, 6957-6965.	2.2	47
14	Mechanisms of stationary-phase mutagenesis in bacteria: mutational processes in pseudomonads. FEMS Microbiology Letters, 2010, 312, 1-14.	1.8	42
15	A DNA Polymerase V Homologue Encoded by TOL Plasmid pWW0 Confers Evolutionary Fitness on Pseudomonas putida under Conditions of Environmental Stress. Journal of Bacteriology, 2005, 187, 5203-5213.	2.2	41
16	Fis regulates the competitiveness of Pseudomonas putida on barley roots by inducing biofilm formation. Microbiology (United Kingdom), 2012, 158, 708-720.	1.8	38
17	Effects of Combination of Different â^'10 Hexamers and Downstream Sequences on Stationary-Phase-Specific Sigma Factor Ï,S-Dependent Transcription in Pseudomonas putida. Journal of Bacteriology, 2000, 182, 6707-6713.	2.2	35
18	Study of involvement of ImuB and DnaE2 in stationary-phase mutagenesis in Pseudomonas putida. DNA Repair, 2007, 6, 863-868.	2.8	31

#	Article	IF	CITATIONS
19	In-vivo-generated fusion promoters in Pseudomonas putida. Gene, 1993, 127, 23-29.	2.2	27
20	Oxidative DNA Damage Defense Systems in Avoidance of Stationary-Phase Mutagenesis in Pseudomonas putida. Journal of Bacteriology, 2007, 189, 5504-5514.	2.2	27
21	Fis overexpression enhances Pseudomonas putida biofilm formation by regulating the ratio of LapA and LapF. Microbiology (United Kingdom), 2014, 160, 2681-2693.	1.8	27
22	Narrative of a versatile and adept species Pseudomonas putida. Journal of Medical Microbiology, 2020, 69, 324-338.	1.8	27
23	Degradation of nitroaromatic compounds: a model to study evolution of metabolic pathways. Molecular Microbiology, 2009, 74, 777-781.	2.5	26
24	The impact of ColRS two-component system and TtgABC efflux pump on phenol tolerance of Pseudomonas putida becomes evident only in growing bacteria. BMC Microbiology, 2010, 10, 110.	3.3	26
25	Dual role of NER in mutagenesis in Pseudomonas putida. DNA Repair, 2008, 7, 20-30.	2.8	24
26	Growth medium composition-determined regulatory mechanisms are superimposed on CatR-mediated transcription from the pheBA and catBCA promoters in Pseudomonas putida. Microbiology (United) Tj ETQq0 0	O rgBT /O	verl ∞€ k 10 Tf 5
27	Mutation Frequency and Spectrum of Mutations Vary at Different Chromosomal Positions of Pseudomonas putida. PLoS ONE, 2012, 7, e48511.	2.5	23
28	Transcription from Fusion Promoters Generated during Transposition of Transposon Tn 4652 Is Positively Affected by Integration Host Factor in Pseudomonas putida. Journal of Bacteriology, 2000, 182, 589-598.	2.2	21
29	IHF is the limiting host factor in transposition of Pseudomonas putida transposon Tn4652 in stationary phase. Molecular Microbiology, 2004, 51, 1773-1785.	2.5	21
30	DNA Polymerases ImuC and DinB Are Involved in DNA Alkylation Damage Tolerance in Pseudomonas aeruginosa and Pseudomonas putida. PLoS ONE, 2017, 12, e0170719.	2.5	20
31	LapF and Its Regulation by Fis Affect the Cell Surface Hydrophobicity of Pseudomonas putida. PLoS ONE, 2016, 11, e0166078.	2.5	20
32	Homologous recombination is facilitated in starving populations of Pseudomonas putida by phenol stress and affected by chromosomal location of the recombination target. Mutation Research - Fundamental and Molecular Mechanisms of Mutagenesis, 2012, 737, 12-24.	1.0	19
33	Involvement of DNA mismatch repair in stationary-phase mutagenesis during prolonged starvation of Pseudomonas putida. DNA Repair, 2006, 5, 505-514.	2.8	18
34	NHEJ enzymes LigD and Ku participate in stationary-phase mutagenesis in Pseudomonas putida. DNA Repair, 2015, 31, 11-18.	2.8	17
35	Mutation and Recombination Rates Vary Across Bacterial Chromosome. Microorganisms, 2020, 8, 25.	3.6	17
36	Regulation of the Transposase of Tn 4652 by the Transposon-Encoded Protein TnpC. Journal of Bacteriology, 1999, 181, 6312-6318.	2.2	17

#	Article	IF	Citations
37	Evolution of catabolic pathways and their regulatory systems in synthetic nitroaromatic compounds degrading bacteria. Molecular Microbiology, 2011, 82, 265-268.	2.5	16
38	Microbial Metabolic Potential of Phenol Degradation in Wastewater Treatment Plant of Crude Oil Refinery: Analysis of Metagenomes and Characterization of Isolates. Microorganisms, 2020, 8, 652.	3.6	16
39	Critical nucleotides in the interaction of CatR with the pheBA promoter: conservation of the CatR-mediated regulation mechanisms between the pheBA and catBCA operons. Microbiology (United) Tj ETQq1	1 :0 878431	41 rgBT /Ove
40	Ongoing evolution of Pseudomonas aeruginosa PAO1 sublines complicates studies of DNA damage repair and tolerance. Mutation Research - Fundamental and Molecular Mechanisms of Mutagenesis, 2017, 797-799, 26-37.	1.0	15
41	Elevated Mutation Frequency in Surviving Populations of Carbon-Starved <i>rpoS</i> -Deficient <i>Pseudomonas putida</i> Is Caused by Reduced Expression of Superoxide Dismutase and Catalase. Journal of Bacteriology, 2009, 191, 3604-3614.	2.2	14
42	Fis negatively affects binding of Tn4652 transposase by out-competing IHF from the left end of Tn4652. Microbiology (United Kingdom), 2009, 155, 1203-1214.	1.8	14
43	Study of factors which negatively affect expression of the phenol degradation operon pheBA in Pseudomonas putida. Microbiology (United Kingdom), 2007, 153, 1860-1871.	1.8	13
44	The promoter region of lapA and its transcriptional regulation by Fis in Pseudomonas putida. PLoS ONE, 2017, 12, e0185482.	2.5	13
45	Pseudomonas putida Fis Binds to the lapF Promoter In Vitro and Represses the Expression of LapF. PLoS ONE, 2014, 9, e115901.	2.5	12
46	Pseudomonas putida AlkA and AlkB Proteins Comprise Different Defense Systems for the Repair of Alkylation Damage to DNA $\hat{a} \in \mathbb{C}$ In Vivo, In Vitro, and In Silico Studies. PLoS ONE, 2013, 8, e76198.	2.5	12
47	Target Site Selection of Pseudomonas putida Transposon Tn 4652. Journal of Bacteriology, 2007, 189, 3918-3921.	2.2	11
48	ColRS twoâ€component system prevents lysis of subpopulation of glucoseâ€grown <i>Pseudomonas putida</i> . Environmental Microbiology, 2008, 10, 2886-2893.	3.8	11
49	Involvement of transcription-coupled repair factor Mfd and DNA helicase UvrD in mutational processes in Pseudomonas putida. DNA Repair, 2018, 72, 18-27.	2.8	11
50	Seasonal bacterial community dynamics in a crude oil refinery wastewater treatment plant. Applied Microbiology and Biotechnology, 2019, 103, 9131-9141.	3.6	11
51	Contribution of increased mutagenesis to the evolution of pollutants-degrading indigenous bacteria. PLoS ONE, 2017, 12, e0182484.	2.5	9
52	Pseudouridines of tRNA Anticodon Stem-Loop Have Unexpected Role in Mutagenesis in Pseudomonas sp Microorganisms, 2021, 9, 25.	3.6	8
53	Integration Host Factor IHF facilitates homologous recombination and mutagenic processes in Pseudomonas putida. DNA Repair, 2020, 85, 102745.	2.8	7
54	Monitoring the growth, survival and phenol utilization of the fluorescent-tagged Pseudomonas oleovorans immobilized and free cells. Bioresource Technology, 2021, 338, 125568.	9.6	7

#	Article	IF	CITATION
55	NER enzymes maintain genome integrity and suppress homologous recombination in the absence of exogenously induced DNA damage in Pseudomonas putida. DNA Repair, 2015, 25, 15-26.	2.8	6
56	Colonization efficiency of Pseudomonas putida is influenced by Fis-controlled transcription of nuoA-N operon. PLoS ONE, 2018, 13, e0201841.	2.5	4
57	A novel papillation assay for the identification of genes affecting mutation rate in Pseudomonas putida and other pseudomonads. Mutation Research - Fundamental and Molecular Mechanisms of Mutagenesis, 2016, 790, 41-55.	1.0	3
58	The Effect of Cellular Redox Status on the Evolvability of New Catabolic Pathways. MBio, 2018, 9, .	4.1	3
59	Pseudomonas putida Biofilm Depends on the vWFa-Domain of LapA in Peptides-Containing Growth Medium. International Journal of Molecular Sciences, 2022, 23, 5898.	4.1	3
60	Tryptone in Growth Media Enhances Pseudomonas putida Biofilm. Microorganisms, 2022, 10, 618.	3.6	2