
Beatriz Herranz

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4852675/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Insights on the effect of age and gender on in-mouth volatile release during wine tasting. Food Research International, 2022, 155, 111100.	6.2	3
2	Effect of addition of human saliva on steady and viscoelastic rheological properties of some commercial dysphagia-oriented products. Food Hydrocolloids, 2021, 111, 106403.	10.7	24
3	Acute supplementation with grapes in obese subjects did not affect postprandial metabolism: a randomized, double-blind, crossover clinical trial. European Journal of Nutrition, 2021, 60, 2671-2681.	3.9	3
4	Understanding the crispy–crunchy texture of raw red pepper and its change with storage time. Journal of Texture Studies, 2020, 51, 120-133.	2.5	5
5	The Effect of Emulsifying Protein and Addition of Condensed Tannins on n-3 PUFA Enriched Emulsions for Functional Foods. Foods, 2020, 9, 1589.	4.3	4
6	Assessment of the Miniature Kramer Shear Cell to Measure Both Solid Food and Bolus Mechanical Properties and Their Interplay with Oral Processing Behavior. Foods, 2020, 9, 613.	4.3	8
7	Phenolic compounds, microstructure and viscosity of onion and apple products subjected to in vitro gastrointestinal digestion. Innovative Food Science and Emerging Technologies, 2019, 51, 114-125.	5.6	20
8	Influence of Fiber Addition on White Sauces Made with Corn Starch: Effect on Their Freezing/Thawing Stability. Journal of Food Science, 2019, 84, 2128-2138.	3.1	6
9	Effect of saliva composition and flow on inter-individual differences in the temporal perception of retronasal aroma during wine tasting. Food Research International, 2019, 126, 108677.	6.2	23
10	Physical effects of dietary fibre on simulated luminal flow, studied by <i>in vitro</i> dynamic gastrointestinal digestion and fermentation. Food and Function, 2019, 10, 3452-3465.	4.6	29
11	Characterization of ethyl cellulose and beeswax oleogels and their suitability as fat replacers in healthier lipid pâtés development. Food Hydrocolloids, 2019, 87, 960-969.	10.7	146
12	Influence of viscosity on the growth of human gut microbiota. Food Hydrocolloids, 2018, 77, 163-167.	10.7	31
13	Influence of interfacial mechanisms on the rheology of creaming emulsions. International Journal of Food Properties, 2018, 21, 1322-1331.	3.0	9
14	Association of plasma and urine viscosity with cardiometabolic risk factors and oxidative status. A pilot study in subjects with abdominal obesity. PLoS ONE, 2018, 13, e0204075.	2.5	9
15	Replacement of Wheat Flour by Chickpea Flour in Muffin Batter: Effect on Rheological Properties. Journal of Food Process Engineering, 2017, 40, e12372.	2.9	24
16	Ready-to-eat chickpea flour purée or cream processed by hydrostatic high pressure with final microwave heating. Innovative Food Science and Emerging Technologies, 2017, 41, 90-99.	5.6	15
17	Effect of long-term frozen storage on the rheological properties ofÂpressurized glucomannan gels. Food Hydrocolloids, 2017, 67, 224-228.	10.7	8
18	Corn starch and egg white enriched gluten-free chickpea flour batters: Rheological and structural properties. International Journal of Food Properties, 2017, 20, S489-S506.	3.0	8

BEATRIZ HERRANZ

#	Article	IF	CITATIONS
19	Comparative study of pH and high pressure treatment on the viscoelastic properties of glucomannan gels after long-term frozen storage. Food Hydrocolloids, 2017, 72, 346-349.	10.7	4
20	Rheometric Non-Isothermal Gelatinization Kinetics of Chickpea Flour-Based Gluten-Free Mufi¬n Batters with Added Biopolymers. Foods, 2017, 6, 3.	4.3	6
21	Effect of high pressure treatment on the structural, mechanical and rheological properties of glucomannan gels. Food Hydrocolloids, 2016, 60, 437-444.	10.7	30
22	Characterisation of chickpea flourâ€based glutenâ€free batters and muffins with added biopolymers: rheological, physical and sensory properties. International Journal of Food Science and Technology, 2016, 51, 1087-1098.	2.7	44
23	New Alternatives in Seafood Restructured Products. Critical Reviews in Food Science and Nutrition, 2016, 56, 237-248.	10.3	32
24	Effect of High Pressure and/or Temperature over Gelation of Isolated Hake Myofibrils. Food and Bioprocess Technology, 2014, 7, 3197-3207.	4.7	44
25	Effect of high-pressure and/or microbial transglutaminase on physicochemical, rheological and microstructural properties of flying fish surimi. Innovative Food Science and Emerging Technologies, 2013, 20, 24-33.	5.6	43
26	Influence of alkali and temperature on glucomannan gels at high concentration. LWT - Food Science and Technology, 2013, 51, 500-506.	5.2	27
27	Influence of measurement temperature on the rheological and microstructural properties of glucomannan gels with different thermal histories. Food Research International, 2012, 48, 885-892.	6.2	31
28	Effect of alkalis on konjac glucomannan gels for use as potential gelling agents in restructured seafood products. Food Hydrocolloids, 2012, 27, 145-153.	10.7	78
29	Thermostability analyses of glucomannan gels. Concentration influence. Food Hydrocolloids, 2012, 29, 85-92.	10.7	38
30	Structural and rheological properties of weakly deacetylated glucomannan gels after high-pressure treatment. International Journal of Food Properties, 0, , 1-9.	3.0	1