

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4852547/publications.pdf Version: 2024-02-01

VINCYU

#	Article	IF	CITATIONS
1	The effect of Epichloë endophyte on phyllosphere microbes and leaf metabolites in Achnatherum inebrians. IScience, 2022, 25, 104144.	4.1	8
2	Effects of Epichloë Endophyte and Transgenerational Effects on Physiology of Achnatherum inebrians under Drought Stress. Agriculture (Switzerland), 2022, 12, 761.	3.1	3
3	Vertically Transmitted Epichloë Systemic Endophyte Enhances Drought Tolerance of Achnatherum inebrians Host Plants through Promoting Photosynthesis and Biomass Accumulation. Journal of Fungi (Basel, Switzerland), 2022, 8, 512.	3.5	6
4	Cuticular Wax Modification by Epichloë Endophyte in Achnatherum inebrians under Different Soil Moisture Availability. Journal of Fungi (Basel, Switzerland), 2022, 8, 725.	3.5	2
5	A foliar Epichloë endophyte and soil moisture modified belowground arbuscular mycorrhizal fungal biodiversity associated with Achnatherum inebrians. Plant and Soil, 2021, 458, 105-122.	3.7	23
6	Alleviating salt stress on seedings using plant growth promoting rhizobacteria isolated from the rhizosphere soil of Achnatherum inebrians infected with EpichloA« gansuensis endophyte. Plant and Soil, 2021, 465, 349-366.	3.7	12
7	The Plant Salicylic Acid Signalling Pathway Regulates the Infection of a Biotrophic Pathogen in Grasses Associated with an Epichloë Endophyte. Journal of Fungi (Basel, Switzerland), 2021, 7, 633.	3.5	32
8	Transcriptome Analysis Revealed Plant Hormone Biosynthesis and Response Pathway Modification by EpichloA«gansuensis in Achnatheruminebrians under Different Soil Moisture Availability. Journal of Fungi (Basel, Switzerland), 2021, 7, 640.	3.5	17
9	Elymus sibiricus populations drive the community of root-associated arbuscular mycorrhizal fungi in a monoculture agroecosystem. Science China Life Sciences, 2020, 63, 453-456.	4.9	0
10	Effects of Epichloë gansuensis Endophyte on the Root and Rhizosphere Soil Bacteria of Achnatherum inebrians Under Different Moisture Conditions. Frontiers in Microbiology, 2020, 11, 747.	3.5	29
11	Effect of Epichloë gansuensis endophyte on the activity of enzymes of nitrogen metabolism, nitrogen use efficiency and photosynthetic ability of Achnatherum inebrians under various NaCl concentrations. Plant and Soil, 2019, 435, 57-68.	3.7	25
12	Effect of <i>Epichloë gansuensis</i> Endophyte on the Nitrogen Metabolism, Nitrogen Use Efficiency, and Stoichiometry of <i>Achnatherum inebrians</i> under Nitrogen Limitation. Journal of Agricultural and Food Chemistry, 2018, 66, 4022-4031.	5.2	41
13	Effect of Epichloë gansuensis endophyte and transgenerational effects on the water use efficiency, nutrient and biomass accumulation of Achnatherum inebrians under soil water deficit. Plant and Soil, 2018, 424, 555-571.	3.7	53
14	Interactive effects of water stress and powdery mildew (Blumeria graminis) on the alkaloid production of Achnatherum inebrians infected by Epichloë endophyte. Science China Life Sciences, 2018, 61, 864-866.	4.9	1
15	Role of <i>Epichloë</i> Endophytes in Defense Responses of Cool-Season Grasses to Pathogens: A Review. Plant Disease, 2018, 102, 2061-2073.	1.4	56
16	Effects of Epichloë endophyte on antioxidant enzymes activities, photosynthesis and growth of three ecotypes of Elymus dahuricus. Frontiers of Agricultural Science and Engineering, 2018, 5, 148.	1.4	5
17	Dahurelmusin A, a Hybrid Peptide–Polyketide from <i>Elymus dahuricus</i> Infected by the <i>Epichloë bromicola</i> Endophyte. Organic Letters, 2017, 19, 298-300.	4.6	8
18	An Epichloë endophyte improves photosynthetic ability and dry matter production of its host Achnatherum inebrians infected by Blumeria graminis under various soil water conditions. Fungal Ecology, 2016, 22, 26-34.	1.6	56

Xingxu

#	Article	IF	CITATIONS
19	Epichloë endophyte affects the ability of powdery mildew (Blumeria graminis) to colonise drunken horse grass (Achnatherum inebrians). Fungal Ecology, 2015, 16, 26-33.	1.6	59
20	Chemical composition and antifungal activity of the volatile oil from Epichloë gansuensis, endophyte-infected and non-infected Achnatherum inebrians. Science China Life Sciences, 2015, 58, 512-514.	4.9	12
21	Antifungal, Phytotoxic, and Cytotoxic Activities of Metabolites from <i>Epichloë bromicola</i> , a Fungus Obtained from <i>Elymus tangutorum</i> Grass. Journal of Agricultural and Food Chemistry, 2015, 63, 8787-8792.	5.2	38
22	Chemical constituents of Alisma orientalis. Chemistry of Natural Compounds, 2014, 49, 1143-1145.	0.8	5
23	Antifungal activity of petroleum ether extracts from Achnatherum inebrians infected with Neotyphodium gansuense. Science China Life Sciences, 2014, 57, 1234-1235.	4.9	5
24	Effects of cadmium stress on seed germination, seedling growth and antioxidative enzymes in Achnatherum inebrians plants infected with a Neotyphodium endophyte. Plant Growth Regulation, 2010, 60, 91-97.	3.4	72
25	Effects of cadmium stress on growth and anti-oxidative systems in Achnatherum inebrians symbiotic with Neotyphodium gansuense. Journal of Hazardous Materials, 2010, 175, 703-709.	12.4	129
26	Twelve polymorphic microsatellite loci for Achnatherum inebrians (Poaceae). Conservation Genetics, 2008, 9, 961-963.	1.5	3