Richard D Bardgett

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4852182/publications.pdf

Version: 2024-02-01

149 papers

37,913 citations

80 h-index 147 g-index

168 all docs 168
docs citations

168 times ranked 27233 citing authors

#	Article	IF	CITATIONS
1	Shrub expansion modulates belowground impacts of changing snow conditions in alpine grasslands. Ecology Letters, 2022, 25, 52-64.	6.4	10
2	Functional Traits 2.0: The power of the metabolome for ecology. Journal of Ecology, 2022, 110, 4-20.	4.0	42
3	Historical context modifies plant diversity–community productivity relationships in alpine grassland. Journal of Ecology, 2022, 110, 2205-2218.	4.0	3
4	Root traits as drivers of plant and ecosystem functioning: current understanding, pitfalls and future research needs. New Phytologist, 2021, 232, 1123-1158.	7. 3	277
5	Root traits explain rhizosphere fungal community composition among temperate grassland plant species. New Phytologist, 2021, 229, 1492-1507.	7.3	102
6	Towards a microbial process-based understanding of the resilience of peatland ecosystem service provisioning $\hat{a} \in A$ research agenda. Science of the Total Environment, 2021, 759, 143467.	8.0	15
7	Nitrogen addition alters composition, diversity, and functioning of microbial communities in mangrove soils: An incubation experiment. Soil Biology and Biochemistry, 2021, 153, 108076.	8.8	38
8	Forest fire induces shortâ€term shifts in soil food webs with consequences for carbon cycling. Ecology Letters, 2021, 24, 438-450.	6.4	22
9	Tracking, targeting, and conserving soil biodiversity. Science, 2021, 371, 239-241.	12.6	151
10	Soil microbial diversity–biomass relationships are driven by soil carbon content across global biomes. ISME Journal, 2021, 15, 2081-2091.	9.8	186
11	Climate change alters temporal dynamics of alpine soil microbial functioning and biogeochemical cycling via earlier snowmelt. ISME Journal, 2021, 15, 2264-2275.	9.8	51
12	Are researchers following best storage practices for measuring soil biochemical properties?. Soil, 2021, 7, 95-106.	4.9	7
13	Reduced microbial stability in the active layer is associated with carbon loss under alpine permafrost degradation. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	7.1	138
14	Contrasting responses of above- and belowground diversity to multiple components of land-use intensity. Nature Communications, 2021, 12, 3918.	12.8	81
15	Do soil depth and plant community composition interact to modify the resistance and resilience of grassland ecosystem functioning to drought?. Ecology and Evolution, 2021, 11, 11960-11973.	1.9	5
16	Glacier forelands reveal fundamental plant and microbial controls on shortâ€ŧerm ecosystem nitrogen retention. Journal of Ecology, 2021, 109, 3710-3723.	4.0	9
17	Variance, locality and structure: Three experimental challenges in the study of the response of soil microbial communities to multiple perturbations. Pedobiologia, 2021, 87-88, 150741.	1.2	2
18	Combatting global grassland degradation. Nature Reviews Earth & Environment, 2021, 2, 720-735.	29.7	377

#	Article	IF	Citations
19	Aridity-driven shift in biodiversity–soil multifunctionality relationships. Nature Communications, 2021, 12, 5350.	12.8	164
20	Food Web Uncertainties Influence Predictions of Climate Change Effects on Soil Carbon Sequestration in Heathlands. Microbial Ecology, 2020, 79, 686-693.	2.8	6
21	Blind spots in global soil biodiversity and ecosystem function research. Nature Communications, 2020, 11, 3870.	12.8	192
22	Contrasting environmental preferences of photosynthetic and nonâ€photosynthetic soil cyanobacteria across the globe. Global Ecology and Biogeography, 2020, 29, 2025-2038.	5.8	24
23	The influence of soil age on ecosystem structure and function across biomes. Nature Communications, 2020, 11, 4721.	12.8	47
24	A global database of soil nematode abundance and functional group composition. Scientific Data, 2020, 7, 103.	5.3	46
25	High ecosystem multifunctionality under moderate grazing is associated with high plant but low bacterial diversity in a semi-arid steppe grassland. Plant and Soil, 2020, 448, 265-276.	3.7	47
26	Soil microbial community responses to climate extremes: resistance, resilience and transitions to alternative states. Philosophical Transactions of the Royal Society B: Biological Sciences, 2020, 375, 20190112.	4.0	146
27	Drought decreases incorporation of recent plant photosynthate into soil food webs regardless of their trophic complexity. Global Change Biology, 2019, 25, 3549-3561.	9.5	37
28	Soil nematode abundance and functional group composition at a global scale. Nature, 2019, 572, 194-198.	27.8	635
29	Towards more predictive and interdisciplinary climate change ecosystem experiments. Nature Climate Change, 2019, 9, 809-816.	18.8	28
30	A few Ascomycota taxa dominate soil fungal communities worldwide. Nature Communications, 2019, 10, 2369.	12.8	341
31	Grassland biodiversity restoration increases resistance of carbon fluxes to drought. Journal of Applied Ecology, 2019, 56, 1806-1816.	4.0	25
32	Relationships between plant traits, soil properties and carbon fluxes differ between monocultures and mixed communities in temperate grassland. Journal of Ecology, 2019, 107, 1704-1719.	4.0	56
33	High throughput method for measuring urease activity in soil. Soil Biology and Biochemistry, 2019, 134, 72-77.	8.8	67
34	Changes in belowground biodiversity during ecosystem development. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 6891-6896.	7.1	151
35	Drought soil legacy overrides maternal effects on plant growth. Functional Ecology, 2019, 33, 1400-1410.	3.6	25
36	A plant perspective on nitrogen cycling in the rhizosphere. Functional Ecology, 2019, 33, 540-552.	3.6	292

#	Article	IF	Citations
37	Guiding carbon farming using interdisciplinary mixed methods mapping. People and Nature, 2019, 1, 191-203.	3.7	7
38	Climate change effects on plant-soil feedbacks and consequences for biodiversity and functioning of terrestrial ecosystems. Science Advances, 2019, 5, eaaz1834.	10.3	245
39	Using plant, microbe, and soil fauna traits to improve the predictive power of biogeochemical models. Methods in Ecology and Evolution, 2019, 10, 146-157.	5.2	41
40	Plastic and genetic responses of a common sedge to warming have contrasting effects on carbon cycle processes. Ecology Letters, 2019, 22, 159-169.	6.4	25
41	Evolutionary history resolves global organization of root functional traits. Nature, 2018, 555, 94-97.	27.8	463
42	Predicting the structure of soil communities from plant community taxonomy, phylogeny, and traits. ISME Journal, 2018, 12, 1794-1805.	9.8	210
43	A global atlas of the dominant bacteria found in soil. Science, 2018, 359, 320-325.	12.6	1,386
44	The added value of including key microbial traits to determine nitrogenâ€related ecosystem services in managed grasslands. Journal of Applied Ecology, 2018, 55, 49-58.	4.0	47
45	Fungal diversity regulates plant-soil feedbacks in temperate grassland. Science Advances, 2018, 4, eaau4578.	10.3	161
46	Linking Aboveground–Belowground Ecology: A Short Historical Perspective. Ecological Studies, 2018, , 1-17.	1.2	8
47	Root architecture governs plasticity in response to drought. Plant and Soil, 2018, 433, 189-200.	3.7	59
48	Soil bacterial networks are less stable under drought than fungal networks. Nature Communications, 2018, 9, 3033.	12.8	992
49	Soil multifunctionality and drought resistance are determined by plant structural traits in restoring grassland. Ecology, 2018, 99, 2260-2271.	3.2	45
50	Legacy effects of drought on plant–soil feedbacks and plant–plant interactions. New Phytologist, 2017, 215, 1413-1424.	7.3	213
51	Plant ecological solutions to global food security. Journal of Ecology, 2017, 105, 859-864.	4.0	22
52	Plant trait-based approaches for interrogating belowground function. Biology and Environment, 2017, 1178, 1.	0.3	48
53	Assessing the Importance of Intraspecific Variability in Dung Beetle Functional Traits. PLoS ONE, 2016, 11, e0145598.	2.5	43
54	Vascular plants promote ancient peatland carbon loss with climate warming. Global Change Biology, 2016, 22, 1880-1889.	9.5	87

#	Article	IF	CITATIONS
55	Influence of plant traits, soil microbial properties, and abiotic parameters on nitrogen turnover of grassland ecosystems. Ecosphere, 2016, 7, e01448.	2.2	34
56	<i>Journal of Ecology</i> News: Data Archiving Compliance. Journal of Ecology, 2016, 104, 1-3.	4.0	4
57	Plant nitrogen-use strategy as a driver of rhizosphere archaeal and bacterial ammonia oxidiser abundance. FEMS Microbiology Ecology, 2016, 92, fiw091.	2.7	76
58	Temperature sensitivity of soil enzymes along an elevation gradient in the Peruvian Andes. Biogeochemistry, 2016, 127, 217-230.	3.5	75
59	Grassland invasibility varies with drought effects on soil functioning. Journal of Ecology, 2016, 104, 1250-1258.	4.0	35
60	Plant diversity and root traits benefit physical properties key to soil function in grasslands. Ecology Letters, 2016, 19, 1140-1149.	6.4	211
61	Legacy effects of grassland management on soil carbon to depth. Global Change Biology, 2016, 22, 2929-2938.	9.5	106
62	Plant community controls on shortâ€ŧerm ecosystem nitrogen retention. New Phytologist, 2016, 210, 861-874.	7.3	92
63	Warming alters competition for organic and inorganic nitrogen between co-existing grassland plant species. Plant and Soil, 2016, 406, 117-129.	3.7	21
64	Influence of soil microbiota in nurse plant systems. Functional Ecology, 2016, 30, 30-40.	3.6	59
65	Earth Matters., 2016,,.		8
66	Simple measures of climate, soil properties and plant traits predict nationalâ€scale grassland soil carbon stocks. Journal of Applied Ecology, 2015, 52, 1188-1196.	4.0	79
67	Warming reduces the cover and diversity of biocrust-forming mosses and lichens, and increases the physiological stress of soil microbial communities in a semi-arid Pinus halepensis plantation. Frontiers in Microbiology, 2015, 6, 865.	3.5	58
68	Soil Methane Sink Capacity Response to a Long-Term Wildfire Chronosequence in Northern Sweden. PLoS ONE, 2015, 10, e0129892.	2.5	12
69	<i>Journal of Ecology</i> News. Journal of Ecology, 2015, 103, 90-92.	4.0	1
70	Isolating the effects of precipitation, soil conditions, and litter quality on leaf litter decomposition in lowland tropical forests. Plant and Soil, 2015, 394, 225-238.	3.7	17
71	Relationships between functional traits and inorganic nitrogen acquisition among eight contrasting European grass species. Annals of Botany, 2015, 115, 107-115.	2.9	78
72	Challenging the paradigm of nitrogen cycling: no evidence of <i>in situ</i> resource partitioning by coexisting plant species in grasslands of contrasting fertility. Ecology and Evolution, 2015, 5, 275-287.	1.9	18

#	Article	IF	CITATIONS
73	Linking soil microbial communities to vascular plant abundance along a climate gradient. New Phytologist, 2015, 205, 1175-1182.	7.3	119
74	Disentangling plant and soil microbial controls on carbon and nitrogen loss in grassland mesocosms. Journal of Ecology, 2015, 103, 629-640.	4.0	34
75	Biodiversity and environmental context predict dung beetleâ€mediated seed dispersal in a tropical forest field experiment. Ecology, 2015, 96, 1607-1619.	3.2	60
76	Vegetation exerts a greater control on litter decomposition than climate warming in peatlands. Ecology, 2015, 96, 113-123.	3.2	101
77	Intensive agriculture reduces soil biodiversity across Europe. Global Change Biology, 2015, 21, 973-985.	9.5	641
78	Microbial carbon mineralization in tropical lowland and montane forest soils of Peru. Frontiers in Microbiology, 2014, 5, 720.	3.5	31
79	Ecologically sustainable fertility management for the maintenance of speciesâ€rich hay meadows: a 12â€year fertilizer and lime experiment. Journal of Applied Ecology, 2014, 51, 152-161.	4.0	16
80	Going underground: root traits as drivers of ecosystem processes. Trends in Ecology and Evolution, 2014, 29, 692-699.	8.7	881
81	Belowground biodiversity and ecosystem functioning. Nature, 2014, 515, 505-511.	27.8	2,371
82	<i>Journal of Ecology</i> News. Journal of Ecology, 2014, 102, 1-3.	4.0	1
83	Reply to Byrnes et al.: Aggregation can obscure understanding of ecosystem multifunctionality. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, E5491.	7.1	15
84	Effects of species evenness and dominant species identity on multiple ecosystem functions in model grassland communities. Oecologia, 2014, 174, 979-992.	2.0	44
85	Discontinuity in the responses of ecosystem processes and multifunctionality to altered soil community composition. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 14478-14483.	7.1	157
86	Globalâ€scale patterns of assemblage structure of soil nematodes in relation to climate and ecosystem properties. Global Ecology and Biogeography, 2014, 23, 968-978.	5.8	171
87	Microbial community composition explains soil respiration responses to changing carbon inputs along an <scp>A</scp> ndesâ€toâ€≺scp>Amazon elevation gradient. Journal of Ecology, 2014, 102, 1058-1071.	4.0	181
88	Biochar in bioenergy cropping systems: impacts on soil faunal communities and linked ecosystem processes. GCB Bioenergy, 2013, 5, 81-95.	5.6	92
89	Relative contributions of plant traits and soil microbial properties to mountain grassland ecosystem services. Journal of Ecology, 2013, 101, 47-57.	4.0	265
90	Biogeochemical plant–soil microbe feedback in response to climate warming in peatlands. Nature Climate Change, 2013, 3, 273-277.	18.8	195

#	Article	IF	Citations
91	Plant–soil feedbacks: the past, the present and future challenges. Journal of Ecology, 2013, 101, 265-276.	4.0	1,259
92	A novel framework for linking functional diversity of plants with other trophic levels for the quantification of ecosystem services. Journal of Vegetation Science, 2013, 24, 942-948.	2.2	209
93	Hierarchical responses of plant–soil interactions to climate change: consequences for the global carbon cycle. Journal of Ecology, 2013, 101, 334-343.	4.0	173
94	Soil food web properties explain ecosystem services across European land use systems. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 14296-14301.	7.1	520
95	Oligopeptides Represent a Preferred Source of Organic N Uptake: A Global Phenomenon?. Ecosystems, 2013, 16, 133-145.	3.4	80
96	Warming effects on greenhouse gas fluxes in peatlands are modulated by vegetation composition. Ecology Letters, 2013, 16, 1285-1293.	6.4	176
97	Plant responses to soil heterogeneity and global environmental change. Journal of Ecology, 2012, 100, 1303-1314.	4.0	101
98	Abiotic drivers and plant traits explain landscapeâ€scale patterns in soil microbial communities. Ecology Letters, 2012, 15, 1230-1239.	6.4	511
99	Fire Accelerates Assimilation and Transfer of Photosynthetic Carbon from Plants to Soil Microbes in a Northern Peatland. Ecosystems, 2012, 15, 1245-1257.	3.4	19
100	Stability of above-ground and below-ground processes to extreme drought in model grassland ecosystems: Interactions with plant species diversity and soil nitrogen availability. Perspectives in Plant Ecology, Evolution and Systematics, 2012, 14, 193-204.	2.7	132
101	Extensive Management Promotes Plant and Microbial Nitrogen Retention in Temperate Grassland. PLoS ONE, 2012, 7, e51201.	2.5	105
102	Land use alters the resistance and resilience of soil food webs to drought. Nature Climate Change, 2012, 2, 276-280.	18.8	480
103	Linking vegetation change, carbon sequestration and biodiversity: insights from island ecosystems in a longâ€term natural experiment. Journal of Ecology, 2012, 100, 16-30.	4.0	191
104	Tansley's vision for <i>Journal of Ecology</i> , and a Centenary Celebration. Journal of Ecology, 2012, 100, 1-5.	4.0	8
105	Plant species richness, identity and productivity differentially influence key groups of microbes in grassland soils of contrasting fertility. Biology Letters, 2011, 7, 75-78.	2.3	129
106	Rapid peptide metabolism: A major component of soil nitrogen cycling?. Global Biogeochemical Cycles, 2011, 25, n/a-n/a.	4.9	64
107	Additional carbon sequestration benefits of grassland diversity restoration. Journal of Applied Ecology, 2011, 48, 600-608.	4.0	145
108	Plant and soil responses to defoliation: a comparative study of grass species with contrasting life history strategies. Plant and Soil, 2011, 344, 377-388.	3.7	18

#	Article	IF	Citations
109	Plant effects on soil N mineralization are mediated by the composition of multiple soil organic fractions. Ecological Research, 2011, 26, 201-208.	1.5	26
110	Stakeholder perceptions of grassland ecosystem services in relation to knowledge on soil fertility and biodiversity. Regional Environmental Change, 2011, 11, 791-804.	2.9	239
111	Ecosystem Rates of Transformation Matterâ€"Response. Science, 2011, 333, 937-937.	12.6	0
112	Molecular study of worldwide distribution and diversity of soil animals. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 17720-17725.	7.1	165
113	Vascular plant success in a warming Antarctic may be due to efficient nitrogen acquisition. Nature Climate Change, 2011, 1, 50-53.	18.8	151
114	Acquisition and Assimilation of Nitrogen as Peptide-Bound and D-Enantiomers of Amino Acids by Wheat. PLoS ONE, 2011, 6, e19220.	2.5	118
115	Plant-soil interactions in a changing world. F1000 Biology Reports, 2011, 3, 16.	4.0	36
116	Towards an assessment of multiple ecosystem processes and services via functional traits. Biodiversity and Conservation, 2010, 19, 2873-2893.	2.6	759
117	Influence of plant species and soil conditions on plant–soil feedback in mixed grassland communities. Journal of Ecology, 2010, 98, 384-395.	4.0	171
118	The use of chronosequences in studies of ecological succession and soil development. Journal of Ecology, 2010, 98, 725-736.	4.0	896
119	Linkages of plant traits to soil properties and the functioning of temperate grassland. Journal of Ecology, 2010, 98, 1074-1083.	4.0	308
120	Biodiversity in the dark. Nature Geoscience, 2010, 3, 297-298.	12.9	111
121	Understanding ecosystem retrogression. Ecological Monographs, 2010, 80, 509-529.	5.4	342
122	Plant functional group identity influences shortâ€term peatland ecosystem carbon flux: evidence from a plant removal experiment. Functional Ecology, 2009, 23, 454-462.	3.6	139
123	Ecosystem feedbacks and cascade processes: understanding their role in the responses of Arctic and alpine ecosystems to environmental change. Global Change Biology, 2009, 15, 1153-1172.	9.5	344
124	Vegetation composition promotes carbon and nitrogen storage in model grassland communities of contrasting soil fertility. Journal of Ecology, 2009, 97, 864-875.	4.0	134
125	Plant–soil interactions and the carbon cycle. Journal of Ecology, 2009, 97, 838-839.	4.0	26
126	Integrating plant–soil interactions into global carbon cycle models. Journal of Ecology, 2009, 97, 851-863.	4.0	233

#	Article	IF	CITATIONS
127	Among―and withinâ€species variation in plant litter decomposition in contrasting longâ€term chronosequences. Functional Ecology, 2009, 23, 442-453.	3.6	69
128	Microbial contributions to climate change through carbon cycle feedbacks. ISME Journal, 2008, 2, 805-814.	9.8	888
129	The unseen majority: soil microbes as drivers of plant diversity and productivity in terrestrial ecosystems. Ecology Letters, 2008, 11, 296-310.	6.4	3,691
130	Plant functional traits and soil carbon sequestration in contrasting biomes. Ecology Letters, 2008, 11, 516-531.	6.4	1,101
131	Drying and rewetting effects on soil microbial community composition and nutrient leaching. Soil Biology and Biochemistry, 2008, 40, 302-311.	8.8	299
132	The response of plant diversity to ecosystem retrogression: evidence from contrasting longâ€ŧerm chronosequences. Oikos, 2008, 117, 93-103.	2.7	88
133	PREFERENCES FOR DIFFERENT NITROGEN FORMS BY COEXISTING PLANT SPECIES AND SOIL MICROBES: REPLY. Ecology, 2008, 89, 879-880.	3.2	4
134	Heterotrophic microbial communities use ancient carbon following glacial retreat. Biology Letters, 2007, 3, 487-490.	2.3	201
135	PREFERENCES FOR DIFFERENT NITROGEN FORMS BY COEXISTING PLANT SPECIES AND SOIL MICROBES. Ecology, 2007, 88, 989-999.	3.2	237
136	Long-Term Consequences of Grazing and Burning on Northern Peatland Carbon Dynamics. Ecosystems, 2007, 10, 1069-1083.	3.4	165
137	Parasitic plants indirectly regulate below-ground properties in grassland ecosystems. Nature, 2006, 439, 969-972.	27.8	193
138	Influence of microbial activity on plant–microbial competition for organic and inorganic nitrogen. Plant and Soil, 2006, 289, 321-334.	3.7	89
139	Preferential uptake of soil nitrogen forms by grassland plant species. Oecologia, 2005, 142, 627-635.	2.0	222
140	Soil Invertebrates Disrupt Carbon Flow Through Fungal Networks. Science, 2005, 309, 1047-1047.	12.6	135
141	A temporal approach to linking aboveground and belowground ecology. Trends in Ecology and Evolution, 2005, 20, 634-641.	8.7	706
142	Ecosystem Properties and Forest Decline in Contrasting Long-Term Chronosequences. Science, 2004, 305, 509-513.	12.6	914
143	Ecological Linkages Between Aboveground and Belowground Biota. Science, 2004, 304, 1629-1633.	12.6	3,502
144	HERBIVORE-MEDIATED LINKAGES BETWEEN ABOVEGROUND AND BELOWGROUND COMMUNITIES. Ecology, 2003, 84, 2258-2268.	3.2	871

#	Article	IF	CITATIONS
145	SOIL MICROBES COMPETE EFFECTIVELY WITH PLANTS FOR ORGANIC-NITROGEN INPUTS TO TEMPERATE GRASSLANDS. Ecology, 2003, 84, 1277-1287.	3.2	313
146	Linkages between soil biota, nitrogen availability, and plant nitrogen uptake in a mountain ecosystem in the Scottish Highlands. Applied Soil Ecology, 2002, 19, 121-134.	4. 3	70
147	The measurement of soil fungal:bacterial biomass ratios as an indicator of ecosystem self-regulation in temperate meadow grasslands. Biology and Fertility of Soils, 1999, 29, 282-290.	4.3	358
148	PLANT REMOVALS IN PERENNIAL GRASSLAND: VEGETATION DYNAMICS, DECOMPOSERS, SOIL BIODIVERSITY, AND ECOSYSTEM PROPERTIES. Ecological Monographs, 1999, 69, 535-568.	5 . 4	415
149	Changes in soil fungal:bacterial biomass ratios following reductions in the intensity of management of an upland grassland. Biology and Fertility of Soils, 1996, 22, 261-264.	4.3	558