List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4852060/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Emergence of a new disease as a result of interspecific virulence gene transfer. Nature Genetics, 2006, 38, 953-956.	21.4	667
2	A review of wheat diseases—a field perspective. Molecular Plant Pathology, 2018, 19, 1523-1536.	4.2	375
3	Host-specific toxins: effectors of necrotrophic pathogenicity. Cellular Microbiology, 2008, 10, 1421-1428.	2.1	275
4	Emerging Insights into the Functions of Pathogenesis-Related Protein 1. Trends in Plant Science, 2017, 22, 871-879.	8.8	271
5	Origins of Grape and Wine Aroma. Part 1. Chemical Components and Viticultural Impacts. American Journal of Enology and Viticulture, 2014, 65, 1-24.	1.7	238
6	Dothideomycete–Plant Interactions Illuminated by Genome Sequencing and EST Analysis of the Wheat Pathogen <i>Stagonospora nodorum</i> . Plant Cell, 2007, 19, 3347-3368.	6.6	235
7	The Cysteine Rich Necrotrophic Effector SnTox1 Produced by Stagonospora nodorum Triggers Susceptibility of Wheat Lines Harboring Snn1. PLoS Pathogens, 2012, 8, e1002467.	4.7	233
8	The nutrient supply of pathogenic fungi; a fertile field for study. Molecular Plant Pathology, 2003, 4, 203-210.	4.2	195
9	New developments in pathogenicity and virulence of necrotrophs. Current Opinion in Plant Biology, 2010, 13, 415-419.	7.1	191
10	<i>Stagonospora nodorum</i> : From Pathology to Genomics and Host Resistance. Annual Review of Phytopathology, 2012, 50, 23-43.	7.8	182
11	Comparative Pathogenomics Reveals Horizontally Acquired Novel Virulence Genes in Fungi Infecting Cereal Hosts. PLoS Pathogens, 2012, 8, e1002952.	4.7	176
12	SnTox3 Acts in Effector Triggered Susceptibility to Induce Disease on Wheat Carrying the Snn3 Gene. PLoS Pathogens, 2009, 5, e1000581.	4.7	175
13	Fungal endophyte infection of ryegrass reprograms host metabolism and alters development. New Phytologist, 2015, 208, 1227-1240.	7.3	165
14	Interactions between Wine Volatile Compounds and Grape and Wine Matrix Components Influence Aroma Compound Headspace Partitioning. Journal of Agricultural and Food Chemistry, 2009, 57, 10313-10322.	5.2	162
15	Stagonospora nodorum: cause of stagonospora nodorum blotch of wheat. Molecular Plant Pathology, 2006, 7, 147-156.	4.2	153
16	Characterization of the Interaction of a Novel <i>Stagonospora nodorum</i> Host-Selective Toxin with a Wheat Susceptibility Gene. Plant Physiology, 2008, 146, 323-324.	4.8	149
17	The nitrogen content of the tomato leaf apoplast increases during infection by Cladosporium fulvum. Planta, 2001, 213, 241-249.	3.2	140
18	Decoding the mannitol enigma in filamentous fungi. Trends in Microbiology, 2007, 15, 257-262.	7.7	134

#	Article	IF	CITATIONS
19	The discovery of the virulence gene <i>ToxA</i> in the wheat and barley pathogen <i>Bipolaris sorokiniana</i> . Molecular Plant Pathology, 2018, 19, 432-439.	4.2	122
20	Assessing the impact of transcriptomics, proteomics and metabolomics on fungal phytopathology. Molecular Plant Pathology, 2009, 10, 703-715.	4.2	121
21	Evidence that Î ³ -aminobutyric acid is a major nitrogen source during Cladosporium fulvum infection of tomato. Planta, 2002, 214, 414-420.	3.2	114
22	Development of a sensitive non-targeted method for characterizing the wine volatile profile using headspace solid-phase microextraction comprehensive two-dimensional gas chromatography time-of-flight mass spectrometry. Journal of Chromatography A, 2011, 1218, 504-517.	3.7	105
23	Xanthine dehydrogenase from the phototrophic purple bacteriumRhodobacter capsulatusis more similar to its eukaryotic counterparts than to prokaryotic molybdenum enzymes. Molecular Microbiology, 1998, 27, 853-869.	2.5	101
24	Pathogenicity of Stagonospora nodorum requires malate synthase. Molecular Microbiology, 2004, 53, 1065-1073.	2.5	101
25	Wheat <scp>PR</scp> â€1 proteins are targeted by necrotrophic pathogen effector proteins. Plant Journal, 2016, 88, 13-25.	5.7	96
26	Is Zymoseptoria tritici a hemibiotroph?. Fungal Genetics and Biology, 2015, 79, 29-32.	2.1	95
27	Fungal phytopathogens encode functional homologues of plant rapid alkalinization factor (RALF) peptides. Molecular Plant Pathology, 2017, 18, 811-824.	4.2	95
28	The Disruption of a Gα Subunit Sheds New Light on the Pathogenicity of Stagonospora nodorum on Wheat. Molecular Plant-Microbe Interactions, 2004, 17, 456-466.	2.6	83
29	Proteinaceous necrotrophic effectors in fungal virulence. Functional Plant Biology, 2010, 37, 907.	2.1	80
30	Impaired Nutrient Signaling and Body Weight Control in a Na+ Neutral Amino Acid Cotransporter (Slc6a19)-deficient Mouse. Journal of Biological Chemistry, 2011, 286, 26638-26651.	3.4	76
31	Differential effector gene expression underpins epistasis in a plant fungal disease. Plant Journal, 2016, 87, 343-354.	5.7	75
32	Transposon-Mediated Horizontal Transfer of the Host-Specific Virulence Protein ToxA between Three Fungal Wheat Pathogens. MBio, 2019, 10, .	4.1	72
33	Influence of Geographic Origin on the Sensory Characteristics and Wine Composition of <i>Vitis vinifera</i> cv. Cabernet Sauvignon Wines from Australia. American Journal of Enology and Viticulture, 2012, 63, 467-476.	1.7	71
34	Just the surface: advances in the discovery and characterization of necrotrophic wheat effectors. Current Opinion in Microbiology, 2018, 46, 14-18.	5.1	71
35	New developments in pathogenicity and virulence of necrotrophs. Current Opinion in Plant Biology, 2010, 13, 415-9.	7.1	70
36	The Transcription Factor StuA Regulates Central Carbon Metabolism, Mycotoxin Production, and Effector Gene Expression in the Wheat Pathogen Stagonospora nodorum. Eukaryotic Cell, 2010, 9, 1100-1108.	3.4	63

#	Article	IF	CITATIONS
37	Recent Fungal Diseases of Crop Plants: Is Lateral Gene Transfer a Common Theme?. Molecular Plant-Microbe Interactions, 2008, 21, 287-293.	2.6	59
38	Ubiquity of ToxA and absence of ToxB in Australian populations of <i>Pyrenophora tritici</i> - <i>repentis</i> . Australasian Plant Pathology, 2010, 39, 63.	1.0	59
39	A Core Gene Set Describes the Molecular Basis of Mutualism and Antagonism in <i>Epichloë</i> spp Molecular Plant-Microbe Interactions, 2015, 28, 218-231.	2.6	59
40	Mannitol is required for asexual sporulation in the wheat pathogen Stagonospora nodorum (glume) Tj ETQq0 (0 rgBT /O 3.7	verlock 10 Tf 5
41	Influence of Yeast Strain, Canopy Management, and Site on the Volatile Composition and Sensory Attributes of Cabernet Sauvignon Wines from Western Australia. Journal of Agricultural and Food Chemistry, 2011, 59, 3273-3284.	5.2	56
42	Role of Cereal Secondary Metabolites Involved in Mediating the Outcome of Plant-Pathogen Interactions. Metabolites, 2011, 1, 64-78.	2.9	55
43	The utilisation of di/tripeptides by Stagonospora nodorum is dispensable for wheat infection. Physiological and Molecular Plant Pathology, 2003, 63, 191-199.	2.5	54
44	Trehalose biosynthesis is involved in sporulation of Stagonospora nodorum. Fungal Genetics and Biology, 2009, 46, 381-389.	2.1	54
45	An <i>In Planta</i> -Expressed Polyketide Synthase Produces (<i>R</i>)-Mellein in the Wheat Pathogen Parastagonospora nodorum. Applied and Environmental Microbiology, 2015, 81, 177-186.	3.1	54
46	Mannitol 1-Phosphate Metabolism Is Required for Sporulation in Planta of the Wheat Pathogen Stagonospora nodorum. Molecular Plant-Microbe Interactions, 2005, 18, 110-115.	2.6	53
47	A quantitative PCR approach to determine gene copy number. Fungal Genetics Reports, 2008, 55, 5-8.	0.6	53
48	The Mak2 MAP kinase signal transduction pathway is required for pathogenicity in Stagonospora nodorum. Current Genetics, 2005, 48, 60-68.	1.7	50
49	Repeat-Induced Point Mutation: A Fungal-Specific, Endogenous Mutagenesis Process. Fungal Biology, 2015, , 55-68.	0.6	49
50	The past, present and future of secondary metabolite research in the <scp>D</scp> othideomycetes. Molecular Plant Pathology, 2015, 16, 92-107.	4.2	49
51	Rapid Parallel Evolution of Azole Fungicide Resistance in Australian Populations of the Wheat Pathogen <i>Zymoseptoria tritici</i> . Applied and Environmental Microbiology, 2019, 85, .	3.1	49
52	Does the oxidative stress used by plants for defence provide a source of nutrients for pathogenic fungi?. Trends in Plant Science, 2004, 9, 472-473.	8.8	48
53	Metabolite profiling identifies the mycotoxin alternariol in the pathogen Stagonospora nodorum. Metabolomics, 2009, 5, 330-335.	3.0	48
54	PR1â€mediated defence via Câ€ŧerminal peptide release is targeted by a fungal pathogen effector. New Phytologist, 2021, 229, 3467-3480.	7.3	48

#	Article	IF	CITATIONS
55	Structural Characterisation of the Interaction between Triticum aestivum and the Dothideomycete Pathogen Stagonospora nodorum. European Journal of Plant Pathology, 2006, 114, 275-282.	1.7	46
56	Origins of Grape and Wine Aroma. Part 2. Chemical and Sensory Analysis. American Journal of Enology and Viticulture, 2014, 65, 25-42.	1.7	46
57	Surveying the potential of secreted antimicrobial peptides to enhance plant disease resistance. Frontiers in Plant Science, 2015, 6, 900.	3.6	46
58	A Signaling-Regulated, Short-Chain Dehydrogenase of <i>Stagonospora nodorum</i> Regulates Asexual Development. Eukaryotic Cell, 2008, 7, 1916-1929.	3.4	45
59	Prevalence of ToxA-sensitive alleles of the wheat gene Tsn1 in Australian and Chinese wheat cultivars. Crop and Pasture Science, 2009, 60, 348.	1.5	42
60	The relationship between sensory attributes and wine composition for Australian Cabernet Sauvignon wines. Australian Journal of Grape and Wine Research, 2011, 17, 327-340.	2.1	41
61	Victorin, the host-selective cyclic peptide toxin from the oat pathogen <i>Cochliobolus victoriae</i> , is ribosomally encoded. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 24243-24250.	7.1	41
62	Transcriptome analysis of <i>Stagonospora nodorum</i> : gene models, effectors, metabolism and pantothenate dispensability. Molecular Plant Pathology, 2012, 13, 531-545.	4.2	40
63	Heterologous expression of cytotoxic sesquiterpenoids from the medicinal mushroom Lignosus rhinocerotis in yeast. Microbial Cell Factories, 2017, 16, 103.	4.0	40
64	Investigating the role of calcium/calmodulin-dependent protein kinases inStagonospora nodorum. Molecular Microbiology, 2006, 62, 367-381.	2.5	38
65	A metabolomic approach to dissecting osmotic stress in the wheat pathogen Stagonospora nodorum. Fungal Genetics and Biology, 2008, 45, 1479-1486.	2.1	38
66	A functional genomics approach to dissect the mode of action of the <i>Stagonospora nodorum</i> effector protein SnToxA in wheat. Molecular Plant Pathology, 2012, 13, 467-482.	4.2	38
67	The necrotrophic effector protein SnTox3 re-programs metabolism and elicits a strong defence response in susceptible wheat leaves. BMC Plant Biology, 2014, 14, 215.	3.6	38
68	Functional genomicsâ€guided discovery of a lightâ€activated phytotoxin in the wheat pathogen <i>Parastagonospora nodorum</i> via pathway activation. Environmental Microbiology, 2017, 19, 1975-1986.	3.8	38
69	Characterising the Role of GABA and Its Metabolism in the Wheat Pathogen Stagonospora nodorum. PLoS ONE, 2013, 8, e78368.	2.5	37
70	The necrotrophic effector S n T ox A induces the synthesis of a novel phytoalexin in wheat. New Phytologist, 2013, 200, 185-200.	7.3	34
71	A specific fungal transcription factor controls effector gene expression and orchestrates the establishment of the necrotrophic pathogen lifestyle on wheat. Scientific Reports, 2019, 9, 15884.	3.3	34
72	Deep proteogenomics; high throughput gene validation by multidimensional liquid chromatography and mass spectrometry of proteins from the fungal wheat pathogen Stagonospora nodorum. BMC Bioinformatics, 2009, 10, 301.	2.6	33

#	Article	IF	CITATIONS
73	Functional redundancy of necrotrophic effectors – consequences for exploitation for breeding. Frontiers in Plant Science, 2015, 6, 501.	3.6	33
74	Production of small cysteineâ€rich effector proteins in <i>Escherichia coli</i> for structural and functional studies. Molecular Plant Pathology, 2017, 18, 141-151.	4.2	32
75	Genetic mapping of Stb19, a new resistance gene to Zymoseptoria tritici in wheat. Theoretical and Applied Genetics, 2018, 131, 2765-2773.	3.6	32
76	Extracellular vesicles from the apoplastic fungal wheat pathogen Zymoseptoria tritici. Fungal Biology and Biotechnology, 2020, 7, 13.	5.1	32
77	Malayamycin, a new streptomycete antifungal compound, specifically inhibits sporulation of <i>Stagonospora nodorum</i> (Berk) Castell and Germano, the cause of wheat glume blotch disease. Pest Management Science, 2008, 64, 1294-1302.	3.4	31
78	Emergence of Tan Spot Disease Caused by Toxigenic <i>Pyrenophora tritici-repentis</i> in Australia Is Not Associated with Increased Deployment of Toxin-Sensitive Cultivars. Phytopathology, 2008, 98, 488-491.	2.2	30
79	Chemical Ecogenomics-Guided Discovery of Phytotoxic α-Pyrones from the Fungal Wheat Pathogen <i>Parastagonospora nodorum</i> . Organic Letters, 2018, 20, 6148-6152.	4.6	30
80	Quantitative disease resistance assessment by real-time PCR using the Stagonospora nodorum-wheat pathosystem as a model. Plant Pathology, 2008, 57, 527-532.	2.4	29
81	A chemical ecogenomics approach to understand the roles of secondary metabolites in fungal cereal pathogens. Frontiers in Microbiology, 2014, 5, 640.	3.5	29
82	Dimethylsulfide:Acceptor Oxidoreductase from Rhodobacter sulfidophilus. The Purified Enzyme Contains b -Type Haem and a Pterin Molybdenum Cofactor. FEBS Journal, 1996, 239, 391-396.	0.2	27
83	Both Mating types of Phaeosphaeria (anamorph Stagonospora) nodorum are Present in Western Australia. European Journal of Plant Pathology, 2004, 110, 763-766.	1.7	27
84	<i>SnPKS19</i> Encodes the Polyketide Synthase for Alternariol Mycotoxin Biosynthesis in the Wheat Pathogen Parastagonospora nodorum. Applied and Environmental Microbiology, 2015, 81, 5309-5317.	3.1	27
85	Phytopathogen emergence in the genomics era. Trends in Plant Science, 2015, 20, 246-255.	8.8	27
86	Recent advances in the Zymoseptoria triticiââ,¬â€œwheat interaction: insights from pathogenomics. Frontiers in Plant Science, 2015, 6, 102.	3.6	27
87	Quantitative proteomic analysis of Gâ€protein signalling in <i>Stagonospora nodorum</i> using isobaric tags for relative and absolute quantification. Proteomics, 2010, 10, 38-47.	2.2	25
88	Proteomic identification of extracellular proteins regulated by the Gna1 Gα subunit in Stagonospora nodorum. Mycological Research, 2009, 113, 523-531.	2.5	24
89	Photochemical characterization of a novel fungal rhodopsin from Phaeosphaeria nodorum. Biochimica Et Biophysica Acta - Bioenergetics, 2011, 1807, 1457-1466.	1.0	24
90	A genome-wide survey of the secondary metabolite biosynthesis genes in the wheat pathogenParastagonospora nodorum. Mycology, 2014, 5, 192-206.	4.4	24

#	Article	IF	CITATIONS
91	Utilizing Gene Tree Variation to Identify Candidate Effector Genes in <i>Zymoseptoria tritici</i> . G3: Genes, Genomes, Genetics, 2016, 6, 779-791.	1.8	24
92	Genomics-Driven Discovery of Phytotoxic Cytochalasans Involved in the Virulence of the Wheat Pathogen <i>Parastagonospora nodorum</i> . ACS Chemical Biology, 2020, 15, 226-233.	3.4	24
93	<i>Lolium perenne</i> apoplast metabolomics for identification of novel metabolites produced by the symbiotic fungus <i>Epichloë festucae</i> . New Phytologist, 2020, 227, 559-571.	7.3	24
94	The crystal structure of SnTox3 from the necrotrophic fungus <i>Parastagonospora nodorum</i> reveals a unique effector fold and provides insight into Snn3 recognition and proâ€domain protease processing of fungal effectors. New Phytologist, 2021, 231, 2282-2296.	7.3	24
95	Methionine synthase, a gene required for methionine synthesis, is expressedin plantabyCladosporium fulvum. Molecular Plant Pathology, 2000, 1, 315-323.	4.2	22
96	Acquisition and Loss of Secondary Metabolites Shaped the Evolutionary Path of Three Emerging Phytopathogens of Wheat. Genome Biology and Evolution, 2019, 11, 890-905.	2.5	22
97	Remarkable recent changes in the genetic diversity of the avirulence gene <i>AvrStb6</i> in global populations of the wheat pathogen <i>Zymoseptoria tritici</i> . Molecular Plant Pathology, 2021, 22, 1121-1133.	4.2	22
98	Characterization of a molybdenum cofactor biosynthetic gene cluster in Rhodobacter capsulatus which is specific for the biogenesis of dimethylsulfoxide reductase. Microbiology (United Kingdom), 1999, 145, 1421-1429.	1.8	20
99	Spatial and Developmental Differentiation of Mannitol Dehydrogenase and Mannitol-1-Phosphate Dehydrogenase in Aspergillus niger. Eukaryotic Cell, 2010, 9, 1398-1402.	3.4	20
100	Molybdate-dependent expression of dimethylsulfoxide reductase inRhodobacter capsulatus. FEMS Microbiology Letters, 2000, 190, 203-208.	1.8	18
101	Bipolenins K–N: New sesquiterpenoids from the fungal plant pathogen <i>Bipolaris sorokiniana</i> . Beilstein Journal of Organic Chemistry, 2019, 15, 2020-2028.	2.2	17
102	The identification of a transposon affecting the asexual reproduction of the wheat pathogen <i>Zymoseptoria tritici</i> . Molecular Plant Pathology, 2021, 22, 800-816.	4.2	17
103	Oral pharmacologic doses of cobalamin may not be as effective as parenteral cobalamin therapy in reversing hyperhomocystinemia and methylmalonic acidemia in apparently normal subjects. International Journal of Laboratory Hematology, 2006, 28, 275-278.	0.2	15
104	Characterisation of the Pterin Molybdenum Cofactor in Dimethylsulfoxide Reductase of Rhodobacter Capsulatus. FEBS Journal, 1997, 246, 200-203.	0.2	14
105	Coverage and Consistency: Bioinformatics Aspects of the Analysis of Multirun iTRAQ Experiments with Wheat Leaves. Journal of Proteome Research, 2013, 12, 4870-4881.	3.7	14
106	Dissecting the role of G-protein signalling in primary metabolism in the wheat pathogen Stagonospora nodorum. Microbiology (United Kingdom), 2013, 159, 1972-1985.	1.8	14
107	Re-classification of the causal agent of white grain disorder on wheat as three separate species of Eutiarosporella. Australasian Plant Pathology, 2015, 44, 527-539.	1.0	14
108	The necrotrophic effector <scp>ToxA</scp> from <i>Parastagonospora nodorum</i> interacts with wheat <scp>NHL</scp> proteins to facilitate <i>Tsn1</i> â€mediated necrosis. Plant Journal, 2022, 110, 407-418.	5.7	14

#	Article	IF	CITATIONS
109	The global regulator of pathogenesis PnCon7 positively regulates <i>Tox3</i> effector gene expression through direct interaction in the wheat pathogen <i>Parastagonospora nodorum</i> . Molecular Microbiology, 2018, 109, 78-90.	2.5	13
110	Combining Protein Ratiop-Values as a Pragmatic Approach to the Analysis of Multirun iTRAQ Experiments. Journal of Proteome Research, 2015, 14, 738-746.	3.7	12
111	A review on South Asian wheat blast: The present status and future perspective. Plant Pathology, 2020, 69, 1618-1629.	2.4	12
112	Assessing the efficacy of CRISPR/Cas9 genome editing in the wheat pathogen Parastagonspora nodorum. Fungal Biology and Biotechnology, 2020, 7, 4.	5.1	12
113	Pro-domain processing of fungal effector proteins from plant pathogens. PLoS Pathogens, 2021, 17, e1010000.	4.7	12
114	δ-Aminolaevulinic acid synthesis is required for virulence of the wheat pathogen Stagonospora nodorum. Microbiology (United Kingdom), 2006, 152, 1533-1538.	1.8	11
115	A comparative analysis of the heterotrimeric G-protein Gα, Gβ and Gγ subunits in the wheat pathogen Stagonospora nodorum. BMC Microbiology, 2012, 12, 131.	3.3	11
116	Metabolomics Protocols for Filamentous Fungi. Methods in Molecular Biology, 2012, 835, 237-254.	0.9	10
117	Autoimmunity and effector recognition in <i>Arabidopsis thaliana</i> can be uncoupled by mutations in the RRS1â€R immune receptor. New Phytologist, 2019, 222, 954-965.	7.3	10
118	Molecular plant immunity against biotrophic, hemibiotrophic, and necrotrophic fungi. Essays in Biochemistry, 2022, 66, 581-593.	4.7	10
119	Normalization of metabolites in heterogenous systems using genomics. Analytical Biochemistry, 2006, 350, 156-158.	2.4	9
120	Assessing the mycotoxigenic threat of necrotrophic pathogens of wheat. Mycotoxin Research, 2011, 27, 231-237.	2.3	8
121	Transition from heterothallism to homothallism is hypothesised to have facilitated speciation among emerging Botryosphaeriaceae wheat-pathogens. Fungal Genetics and Biology, 2017, 109, 36-45.	2.1	8
122	Functional characterisation of glyoxalase I from the fungal wheat pathogen Stagonospora nodorum. Current Genetics, 2004, 46, 115-21.	1.7	7
123	Next-generation re-sequencing as a tool for rapid bioinformatic screening of presence and absence of genes and accessory chromosomes across isolates of Zymoseptoria tritici. Fungal Genetics and Biology, 2015, 79, 71-75.	2.1	7
124	Have we finally opened the door to understanding <i>Septoria tritici</i> blotch disease in wheat?. New Phytologist, 2017, 214, 493-495.	7.3	7
125	Biosynthesis of a Tricyclo[6.2.2.0 ^{2,7}]dodecane System by a Berberine Bridge Enzyme‣ike Aldolase. Chemistry - A European Journal, 2019, 25, 15062-15066.	3.3	7
197	The rise of percentrophic effectors, New Phytologist, 2022, 222, 11, 14	7.9	7

7.3 7

#	ARTICLE	IF	CITATIONS
127	Volatile Molecules Secreted by the Wheat Pathogen Parastagonospora nodorum Are Involved in Development and Phytotoxicity. Frontiers in Microbiology, 2020, 11, 466.	3.5	6
128	Development of an in-house protocol for the OFFGEL fractionation of plant proteins. Journal of Integrated OMICS, 2011, 1, .	0.5	5
129	Proteomic Techniques for Plant–Fungal Interactions. Methods in Molecular Biology, 2012, 835, 75-96.	0.9	4
130	Editorial: How Can Secretomics Help Unravel the Secrets of Plant-Microbe Interactions?. Frontiers in Plant Science, 2016, 7, 1777.	3.6	4
131	Optimized Production of Disulfide-Bonded Fungal Effectors in <i>Escherichia coli</i> Using CyDisCo and FunCyDisCo Coexpression Approaches. Molecular Plant-Microbe Interactions, 2022, 35, 109-118.	2.6	3
132	Simple and efficient heterologous expression of necrosisâ€inducing effectors using the model plant <i>Nicotiana benthamiana</i> . Plant Direct, 2021, 5, e341.	1.9	2
133	Pathogen effectors shed light on plant diseases. Functional Plant Biology, 2010, 37, iii.	2.1	1
134	Dimethylsulfide as an electron donor in Rhodobacter sulfidophilus. , 1996, , 41-48.		1
135	Functional genomics and mycotoxin discovery in the wheat glume blotch pathogen Stagonospora nodorum. Microbiology Australia, 2011, 32, 156.	0.4	0
136	Molybdate-dependent expression of dimethylsulfoxide reductase in Rhodobacter capsulatus. FEMS Microbiology Letters, 2000, 190, 203-208.	1.8	0