
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4851989/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	CDK/cyclin dependencies define extreme cancer cell-cycle heterogeneity and collateral vulnerabilities. Cell Reports, 2022, 38, 110448.	6.4	48
2	Real-World Experience with CDK4/6 Inhibitors for Metastatic HR+/HER2â^' Breast Cancer at a Single Cancer Center. Oncologist, 2022, 27, 646-654.	3.7	7
3	TP53, CDKN2A/P16, and NFE2L2/NRF2 regulate the incidence of pure- and combined-small cell lung cancer in mice. Oncogene, 2022, 41, 3423-3432.	5.9	7
4	Cancer cell cycle dystopia: heterogeneity, plasticity, and therapy. Trends in Cancer, 2022, 8, 711-725.	7.4	12
5	Targeting dual signalling pathways in concert with immune checkpoints for the treatment of pancreatic cancer. Gut, 2021, 70, 127-138.	12.1	49
6	Functional Determinants of Cell Cycle Plasticity and Sensitivity to CDK4/6 Inhibition. Cancer Research, 2021, 81, 1347-1360.	0.9	40
7	Phase I Clinical Trial of Combination Propranolol and Pembrolizumab in Locally Advanced and Metastatic Melanoma: Safety, Tolerability, and Preliminary Evidence of Antitumor Activity. Clinical Cancer Research, 2021, 27, 87-95.	7.0	72
8	Binary pan-cancer classes with distinct vulnerabilities defined by pro- or anti-cancer YAP/TEAD activity. Cancer Cell, 2021, 39, 1115-1134.e12.	16.8	86
9	Phase Ib/II Study of Cetuximab plus Pembrolizumab in Patients with Advanced RAS Wild-Type Colorectal Cancer. Clinical Cancer Research, 2021, 27, 6726-6736.	7.0	8
10	Chemotherapy impacts on the cellular response to CDK4/6 inhibition: distinct mechanisms of interaction and efficacy in models of pancreatic cancer. Oncogene, 2020, 39, 1831-1845.	5.9	25
11	A Phase I Study of Ribociclib Plus Everolimus in Patients with Metastatic Pancreatic Adenocarcinoma Refractory to Chemotherapy. Journal of Pancreatic Cancer, 2020, 6, 45-54.	0.9	15
12	Selective CDK4/6 Inhibitors: Biologic Outcomes, Determinants of Sensitivity, Mechanisms of Resistance, Combinatorial Approaches, and Pharmacodynamic Biomarkers. American Society of Clinical Oncology Educational Book / ASCO American Society of Clinical Oncology Meeting, 2020, 40, 115-126.	3.8	16
13	Chemotherapy and CDK4/6 Inhibitors: Unexpected Bedfellows. Molecular Cancer Therapeutics, 2020, 19, 1575-1588.	4.1	35
14	Pan-cancer molecular analysis of the RB tumor suppressor pathway. Communications Biology, 2020, 3, 158.	4.4	50
15	Interrogating Mutant Allele Expression via Customized Reference Genomes to Define Influential Cancer Mutations. Scientific Reports, 2019, 9, 12766.	3.3	5
16	Cell cycle plasticity driven by MTOR signaling: integral resistance to CDK4/6 inhibition in patient-derived models of pancreatic cancer. Oncogene, 2019, 38, 3355-3370.	5.9	46
17	Cell Cycle and Beyond: Exploiting New RB1 Controlled Mechanisms for Cancer Therapy. Trends in Cancer, 2019, 5, 308-324.	7.4	113
18	p27 allosterically activates cyclin-dependent kinase 4 and antagonizes palbociclib inhibition. Science, 2019, 366, .	12.6	132

#	Article	IF	CITATIONS
19	Coordinately Targeting Cell-Cycle Checkpoint Functions in Integrated Models of Pancreatic Cancer. Clinical Cancer Research, 2019, 25, 2290-2304.	7.0	26
20	Targeting the Vulnerability of RB Tumor Suppressor Loss in Triple-Negative Breast Cancer. Cell Reports, 2018, 22, 1185-1199.	6.4	71
21	Pancreatic cancer cell lines as patient-derived avatars: genetic characterisation and functional utility. Gut, 2018, 67, 508-520.	12.1	81
22	Composite analysis of immunological and metabolic markers defines novel subtypes of triple negative breast cancer. Modern Pathology, 2018, 31, 288-298.	5.5	38
23	Identification of highly penetrant Rb-related synthetic lethal interactions in triple negative breast cancer. Oncogene, 2018, 37, 5701-5718.	5.9	24
24	The Strange Case of CDK4/6 Inhibitors: Mechanisms, Resistance, and Combination Strategies. Trends in Cancer, 2017, 3, 39-55.	7.4	206
25	Kinome-Wide RNA Interference Screen Reveals a Role for PDK1 in Acquired Resistance to CDK4/6 Inhibition in ER-Positive Breast Cancer. Cancer Research, 2017, 77, 2488-2499.	0.9	178
26	Stratification of Pancreatic Ductal Adenocarcinoma: Combinatorial Genetic, Stromal, and Immunologic Markers. Clinical Cancer Research, 2017, 23, 4429-4440.	7.0	142
27	The transcriptome of CDK4/6 inhibition. Aging, 2017, 9, 1859-1860.	3.1	2
28	Integrated Patient-Derived Models Delineate Individualized Therapeutic Vulnerabilities of Pancreatic Cancer. Cell Reports, 2016, 16, 2017-2031.	6.4	84
29	Metabolic Reprogramming of Pancreatic Cancer Mediated by CDK4/6 Inhibition Elicits Unique Vulnerabilities. Cell Reports, 2016, 14, 979-990.	6.4	160
30	Immunologic and Metabolic Features of Pancreatic Ductal Adenocarcinoma Define Prognostic Subtypes of Disease. Clinical Cancer Research, 2016, 22, 3606-3617.	7.0	73
31	Genetic Diversity of Pancreatic Ductal Adenocarcinoma and Opportunities for Precision Medicine. Gastroenterology, 2016, 150, 48-63.	1.3	90
32	Defining the transcriptional and biological response to CDK4/6 inhibition in relation to ER+/HER2- breast cancer. Oncotarget, 2016, 7, 69111-69123.	1.8	26
33	Unique metabolic features of pancreatic cancer stroma: relevance to the tumor compartment, prognosis, and invasive potential. Oncotarget, 2016, 7, 78396-78411.	1.8	45
34	Whole-exome sequencing of pancreatic cancer defines genetic diversity and therapeutic targets. Nature Communications, 2015, 6, 6744.	12.8	879
35	The history and future of targeting cyclin-dependent kinases in cancer therapy. Nature Reviews Drug Discovery, 2015, 14, 130-146.	46.4	1,316
36	The RB tumor suppressor at the intersection of proliferation and immunity: relevance to disease immune evasion and immunotherapy. Cell Cycle, 2015, 14, 3812-3819.	2.6	42

#	Article	IF	CITATIONS
37	Kinase-independent role of cyclin D1 in chromosomal instability and mammary tumorigenesis. Oncotarget, 2015, 6, 8525-8538.	1.8	43
38	Selective impact of CDK4/6 suppression on patient-derived models of pancreatic cancer. Oncotarget, 2015, 6, 15788-15801.	1.8	51
39	MCT4 Defines a Glycolytic Subtype of Pancreatic Cancer with Poor Prognosis and Unique Metabolic Dependencies. Cell Reports, 2014, 9, 2233-2249.	6.4	182
40	Systematically Defining Single-Gene Determinants of Response to Neoadjuvant Chemotherapy Reveals Specific Biomarkers. Clinical Cancer Research, 2014, 20, 4837-4848.	7.0	19
41	Retinoblastoma protein potentiates the innate immune response in hepatocytes: Significance for hepatocellular carcinoma. Hepatology, 2014, 60, 1231-1240.	7.3	28
42	Retinoblastoma tumor suppressor pathway in breast cancer: prognosis, precision medicine, and therapeutic interventions. Breast Cancer Research, 2014, 16, 207.	5.0	101
43	The Changing Landscape of Hepatocellular Carcinoma. American Journal of Pathology, 2014, 184, 574-583.	3.8	82
44	RB Tumor Suppressive Function in Response to Xenobiotic Hepatocarcinogens. American Journal of Pathology, 2014, 184, 1853-1859.	3.8	6
45	CDK4/6 inhibition provides a potent adjunct to Her2-targeted therapies in preclinical breast cancer models. Genes and Cancer, 2014, 5, 261-272.	1.9	101
46	CDK4/6 inhibitors have potent activity in combination with pathway selective therapeutic agents in models of pancreatic cancer. Oncotarget, 2014, 5, 6512-6525.	1.8	180
47	EZH2 and ALDH1 expression in ductal carcinoma in situ: Complex association with recurrence and progression to invasive breast cancer. Cell Cycle, 2013, 12, 2042-2050.	2.6	31
48	Modification of the DNA Damage Response by Therapeutic CDK4/6 Inhibition. Journal of Biological Chemistry, 2012, 287, 29075-29087.	3.4	128
49	Retinoblastoma and Phosphate and Tensin Homolog Tumor Suppressors: Impact on Ductal Carcinoma In Situ Progression. Journal of the National Cancer Institute, 2012, 104, 1825-1836.	6.3	24
50	CDK4/6 inhibition antagonizes the cytotoxic response to anthracycline therapy. Cell Cycle, 2012, 11, 2747-2755.	2.6	147
51	RB-Pathway Disruption Is Associated with Improved Response to Neoadjuvant Chemotherapy in Breast Cancer. Clinical Cancer Research, 2012, 18, 5110-5122.	7.0	64
52	The meaning of p16 ^{ink4a} expression in tumors. Cell Cycle, 2011, 10, 2497-2503.	2.6	240
53	Targeting the RB-pathway in Cancer Therapy. Clinical Cancer Research, 2010, 16, 1094-1099.	7.0	177
54	RB-pathway disruption in breast cancer. Cell Cycle, 2010, 9, 4153-4163.	2.6	163

#	Article	IF	CITATIONS
55	Tailoring to RB: tumour suppressor status and therapeutic response. Nature Reviews Cancer, 2008, 8, 714-724.	28.4	311
56	Loss of RB compromises specific heterochromatin modifications and modulates HP1α dynamics. Journal of Cellular Physiology, 2007, 211, 131-137.	4.1	41
57	The retinoblastoma tumor suppressor modifies the therapeutic response of breast cancer. Journal of Clinical Investigation, 2007, 117, 218-228.	8.2	178
58	Unbiased analysis of RB-mediated transcriptional repression identifies novel targets and distinctions from E2F action. Cancer Research, 2002, 62, 6587-97.	0.9	106
59	Cyclin A Is a Functional Target of Retinoblastoma Tumor Suppressor Protein-mediated Cell Cycle Arrest. Journal of Biological Chemistry, 1999, 274, 27632-27641.	3.4	66
60	Differential Regulation of Retinoblastoma Protein Function by Specific Cdk Phosphorylation Sites. Journal of Biological Chemistry, 1996, 271, 8313-8320.	3.4	264
61	Cell cycle: mechanisms of control and dysregulation in cancer. , 0, , 452-464.		Ο
62	RB loss determines selective resistance and novel vulnerabilities in ER-positive breast cancer models. Oncogene, 0, , .	5.9	6