Zhenkun Sun

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4851831/publications.pdf

Version: 2024-02-01

76196 123241 7,466 59 40 61 citations h-index g-index papers 62 62 62 10250 all docs docs citations times ranked citing authors

#	Article	IF	CITATIONS
1	Multifunctional Mesoporous Composite Microspheres with Well-Designed Nanostructure: A Highly Integrated Catalyst System. Journal of the American Chemical Society, 2010, 132, 8466-8473.	6.6	887
2	A Controllable Synthesis of Rich Nitrogenâ€Doped Ordered Mesoporous Carbon for CO ₂ Capture and Supercapacitors. Advanced Functional Materials, 2013, 23, 2322-2328.	7.8	861
3	Highly Waterâ€Dispersible Biocompatible Magnetite Particles with Low Cytotoxicity Stabilized by Citrate Groups. Angewandte Chemie - International Edition, 2009, 48, 5875-5879.	7.2	856
4	Large-pore ordered mesoporous materials templated from non-Pluronic amphiphilic block copolymers. Chemical Society Reviews, 2013, 42, 4054-4070.	18.7	403
5	Sol–Gel Design Strategy for Ultradispersed TiO ₂ Nanoparticles on Graphene for High-Performance Lithium Ion Batteries. Journal of the American Chemical Society, 2013, 135, 18300-18303.	6.6	348
6	New Insight into the Synthesis of Large-Pore Ordered Mesoporous Materials. Journal of the American Chemical Society, 2017, 139, 1706-1713.	6.6	274
7	Free-Standing Mesoporous Carbon Thin Films with Highly Ordered Pore Architectures for Nanodevices. Journal of the American Chemical Society, 2011, 133, 15148-15156.	6.6	255
8	A General Chelate-Assisted Co-Assembly to Metallic Nanoparticles-Incorporated Ordered Mesoporous Carbon Catalysts for Fischer–Tropsch Synthesis. Journal of the American Chemical Society, 2012, 134, 17653-17660.	6.6	227
9	Hierarchically Ordered Macro-/Mesoporous Silica Monolith: Tuning Macropore Entrance Size for Size-Selective Adsorption of Proteins. Chemistry of Materials, 2011, 23, 2176-2184.	3.2	200
10	Solvent Evaporation Induced Aggregating Assembly Approach to Three-Dimensional Ordered Mesoporous Silica with Ultralarge Accessible Mesopores. Journal of the American Chemical Society, 2011, 133, 20369-20377.	6.6	158
11	Radially oriented mesoporous TiO ₂ microspheres with single-crystal–like anatase walls for high-efficiency optoelectronic devices. Science Advances, 2015, 1, e1500166.	4.7	139
12	Magnetic yolk–shell mesoporous silica microspheres with supported Au nanoparticles as recyclable high-performance nanocatalysts. Journal of Materials Chemistry A, 2015, 3, 4586-4594.	5.2	129
13	Controlled Synthesis and Functionalization of Ordered Largeâ€Pore Mesoporous Carbons. Advanced Functional Materials, 2010, 20, 3658-3665.	7.8	127
14	Review on the Development of Sorbents for Calcium Looping. Energy & Energy	2.5	117
15	Ultra-Large-Pore Mesoporous Carbons Templated from Poly(ethylene oxide)- <i>b</i> -Polystyrene Diblock Copolymer by Adding Polystyrene Homopolymer as a Pore Expander. Chemistry of Materials, 2008, 20, 7281-7286.	3.2	115
16	Designed Fabrication and Characterization of Three-Dimensionally Ordered Arrays of Core–Shell Magnetic Mesoporous Carbon Microspheres. ACS Applied Materials & 1, 5312-5319.	4.0	115
17	A versatile ethanol-mediated polymerization of dopamine for efficient surface modification and the construction of functional core–shell nanostructures. Journal of Materials Chemistry B, 2013, 1, 6085.	2.9	110
18	Ultradispersed Palladium Nanoparticles in Three-Dimensional Dendritic Mesoporous Silica Nanospheres: Toward Active and Stable Heterogeneous Catalysts. ACS Applied Materials & Discrete Samp; Interfaces, 2015, 7, 17450-17459.	4.0	110

#	Article	IF	Citations
19	Design of Amphiphilic ABC Triblock Copolymer for Templating Synthesis of Large-Pore Ordered Mesoporous Carbons with Tunable Pore Wall Thickness. Chemistry of Materials, 2009, 21, 3996-4005.	3.2	102
20	Synthesis of Dualâ€Mesoporous Silica Using Nonâ€Ionic Diblock Copolymer and Cationic Surfactant as Coâ€Templates. Angewandte Chemie - International Edition, 2012, 51, 6149-6153.	7.2	101
21	Hierarchically tetramodal-porous zeolite ZSM-5 monoliths with template-free-derived intracrystalline mesopores. Chemical Science, 2014, 5, 1565.	3.7	98
22	An Interface-Directed Coassembly Approach To Synthesize Uniform Large-Pore Mesoporous Silica Spheres. Journal of the American Chemical Society, 2014, 136, 1884-1892.	6.6	97
23	Ordered Mesoporous Alumina with Ultra-Large Pores as an Efficient Absorbent for Selective Bioenrichment. Chemistry of Materials, 2017, 29, 2211-2217.	3.2	89
24	Hierarchical Cu $<$ sub $>$ 2 $<$ /sub $>$ S Microsponges Constructed from Nanosheets for Efficient Photocatalysis. Small, 2013, 9, 2702-2708.	5.2	85
25	Magnetically responsive ordered mesoporous materials: A burgeoning family of functional composite nanomaterials. Chemical Physics Letters, 2011, 510, 1-13.	1.2	84
26	In-Situ Crystallization Route to Nanorod-Aggregated Functional ZSM-5 Microspheres. Journal of the American Chemical Society, 2013, 135, 1181-1184.	6.6	84
27	General Synthesis of Discrete Mesoporous Carbon Microspheres through a Confined Self-Assembly Process in Inverse Opals. ACS Nano, 2013, 7, 8706-8714.	7.3	79
28	Mesoporous TiO ₂ Mesocrystals: Remarkable Defects-Induced Crystallite-Interface Reactivity and Their in Situ Conversion to Single Crystals. ACS Central Science, 2015, 1, 400-408.	5. 3	74
29	Ordered Macro/Mesoporous TiO ₂ Hollow Microspheres with Highly Crystalline Thin Shells for High-Efficiency Photoconversion. Small, 2016, 12, 860-867.	5.2	71
30	A versatile designed synthesis of magnetically separable nano-catalysts with well-defined core–shell nanostructures. Journal of Materials Chemistry A, 2014, 2, 6071-6074.	5.2	63
31	Interfacial engineering of magnetic particles with porous shells: Towards magnetic core – Porous shell microparticles. Nano Today, 2016, 11, 464-482.	6.2	61
32	Microemulsion-derived, nanostructured CaO/CuO composites with controllable particle grain size to enhance cyclic CO2 capture performance for combined Ca/Cu looping process. Chemical Engineering Journal, 2020, 393, 124716.	6.6	60
33	Template-free synthesis of uniform magnetic mesoporous TiO2 nanospindles for highly selective enrichment of phosphopeptides. Materials Horizons, 2014, 1, 439.	6.4	53
34	Enhanced performance of ilmenite modified by CeO 2 , ZrO 2 , NiO, and Mn 2 O 3 as oxygen carriers in chemical looping combustion. Applied Energy, 2017, 195, 303-315.	5.1	53
35	A Facile fabrication of mesoporous core–shell CaO-Based pellets with enhanced reactive stability and resistance to attrition in cyclic CO ₂ capture. Journal of Materials Chemistry A, 2014, 2, 16577-16588.	5.2	51
36	Development of Sinter-Resistant Core–Shell LaMn _{<i>x</i>} Fe _{1–<i>x</i>} O ₃ @mSiO ₂ Oxygen Carriers for Chemical Looping Combustion. Energy & Combustion. Ene	2.5	47

#	Article	IF	Citations
37	Novel synthetic sol–gel CaO based pellets using porous mesostructured silica in cyclic CO2 capture process. Fuel, 2014, 127, 101-108.	3.4	44
38	Chemical looping reforming of CH4 in the presence of CO2 using ilmenite ore and NiO-modified ilmenite ore oxygen carriers. Chemical Engineering Journal, 2020, 401, 123481.	6.6	42
39	Large-pore ordered mesoporous carbons with tunable structures and pore sizes templated from poly(ethylene oxide)-b-poly(methyl methacrylate). Solid State Sciences, 2011, 13, 784-792.	1.5	41
40	Rational synthesis of superparamagnetic core–shell structured mesoporous microspheres with large pore sizes. Journal of Materials Chemistry A, 2014, 2, 18322-18328.	5.2	37
41	Magnetic 3-D ordered macroporous silica templated from binary colloidal crystals and its application for effective removal of microcystin. Microporous and Mesoporous Materials, 2010, 130, 26-31.	2.2	36
42	Selectivity Enhancement in Dynamic Kinetic Resolution of Secondary Alcohols through Adjusting the Micro-Environment of Metal Complex Confined in Nanochannels: A Promising Strategy for Tandem Reactions. ACS Catalysis, 2015, 5, 27-33.	5.5	36
43	A systematic investigation of the formation of ordered mesoporous silicas using poly(ethylene) Tj ETQq $1\ 1\ 0.784$	314 rgBT 5.2	/Oyerlock 10
44	Catalysts of Ordered Mesoporous Alumina with a Large Pore Size for Low-Temperature Hydrolysis of Carbonyl Sulfide. Energy & Damp; Fuels, 2021, 35, 8895-8908.	2.5	30
45	A simple approach to the synthesis of hollow microspheres with magnetite/silica hybrid walls. Journal of Colloid and Interface Science, 2009, 333, 329-334.	5.0	28
46	Ilmenite oxidation kinetics for pressurized chemical looping combustion of natural gas. Applied Energy, 2019, 238, 747-759.	5.1	24
47	Coreâ€shell structured CaOâ€based pellets protected by mesoporous ceramics shells for highâ€temperature CO ₂ capture. Canadian Journal of Chemical Engineering, 2016, 94, 2038-2044.	0.9	23
48	Chemical looping co-conversion of CH4 and CO2 using Fe2O3/Al2O3 pellets as both oxygen carrier and catalyst in a fluidized bed reactor. Chemical Engineering Journal, 2022, 428, 132133.	6.6	22
49	Flame spray pyrolysis synthesized CuO–CeO2 composite for catalytic combustion of C3H6. Proceedings of the Combustion Institute, 2021, 38, 6513-6520.	2.4	18
50	O2 uncoupling behaviour of ilmenite and manganese-modified ilmenite as oxygen carriers. Fuel Processing Technology, 2018, 169, 15-23.	3.7	17
51	Ilmenite ore as an oxygen carrier for pressurized chemical looping reforming: Characterization and process simulation. International Journal of Greenhouse Gas Control, 2019, 81, 240-258.	2.3	16
52	Effects of H ₂ S on the Reactivity of Ilmenite Ore as Chemical Looping Combustion Oxygen Carrier with Methane as Fuel. Energy & Samp; Fuels, 2019, 33, 585-594.	2.5	16
53	CoFe ₂ O ₄ Nanocrystals Mediated Crystallization Strategy for Magnetic Functioned ZSMâ€5 Catalysts. Advanced Functional Materials, 2018, 28, 1802088.	7.8	15
54	Pressurized oxy-fuel combustion of a char particle in the fluidized bed combustor. Proceedings of the Combustion Institute, 2021, 38, 5485-5492.	2.4	14

ZHENKUN SUN

#	Article	IF	CITATIONS
55	Core/Shell Nanostructured Materials for Sustainable Processes. International Journal of Chemical Reactor Engineering, 2016, 14, 667-684.	0.6	7
56	Accelerated syngas generation from chemical looping CH4 reforming by using reduced ilmenite ore as catalyst. Fuel Processing Technology, 2022, 232, 107270.	3.7	4
57	Oxygen uncoupling behaviour for ilmenite ore oxygen carrier generated from a calcination treatment mixed with natural manganese ore. Canadian Journal of Chemical Engineering, 2023, 101, 805-818.	0.9	3
58	Effect of Sulfur on the Reduction of Ilmenite by Syngas in Chemical Looping Combustion. ACS Omega, 2020, 5, 9674-9683.	1.6	2
59	Fabrication of Polymeric Nano-Batteries Array Using Anodic Aluminum Oxide Templates. Journal of Nanoscience and Nanotechnology, 2009, 9, 929-932.	0.9	0