
Sebastian Kügler

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4851796/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Pre-fibrillar α-synuclein variants with impaired β-structure increase neurotoxicity in Parkinson's disease models. EMBO Journal, 2009, 28, 3256-3268.	7.8	411
2	Repurposing the NRF2 Activator Dimethyl Fumarate as Therapy Against Synucleinopathy in Parkinson's Disease. Antioxidants and Redox Signaling, 2016, 25, 61-77.	5.4	209
3	Nuclear localization and phosphorylation modulate pathological effects of alpha-synuclein. Human Molecular Genetics, 2019, 28, 31-50.	2.9	131
4	Pharmacological targeting of GSK-3 and NRF2 provides neuroprotection in a preclinical model of tauopathy. Redox Biology, 2018, 14, 522-534.	9.0	125
5	A dualâ€AAV approach restores fast exocytosis and partially rescues auditory function in deaf otoferlin knockâ€out mice. EMBO Molecular Medicine, 2019, 11, .	6.9	118
6	The mechanism of sirtuin 2–mediated exacerbation of alpha-synuclein toxicity in models of Parkinson disease. PLoS Biology, 2017, 15, e2000374.	5.6	114
7	Fractalkine activates NRF2/NFE2L2 and heme oxygenase 1 to restrain tauopathy-induced microgliosis. Brain, 2014, 137, 78-91.	7.6	112
8	β-Synuclein-reactive T cells induce autoimmune CNS grey matter degeneration. Nature, 2019, 566, 503-508.	27.8	109
9	Dendritic Degeneration, Neurovascular Defects, and Inflammation Precede Neuronal Loss in a Mouse Model for Tau-Mediated Neurodegeneration. American Journal of Pathology, 2011, 179, 2001-2015.	3.8	105
10	Aggregation of αSynuclein promotes progressive in vivo neurotoxicity in adult rat dopaminergic neurons. Acta Neuropathologica, 2012, 123, 671-683.	7.7	96
11	Probing the Functional Equivalence of Otoferlin and Synaptotagmin 1 in Exocytosis. Journal of Neuroscience, 2011, 31, 4886-4895.	3.6	94
12	Efficient Gene Therapy for Parkinson's Disease Using Astrocytes as Hosts for Localized Neurotrophic Factor Delivery. Molecular Therapy, 2012, 20, 534-543.	8.2	82
13	AAV-Tau Mediates Pyramidal Neurodegeneration by Cell-Cycle Re-Entry without Neurofibrillary Tangle Formation in Wild-Type Mice. PLoS ONE, 2009, 4, e7280.	2.5	71
14	βâ€synuclein aggregates and induces neurodegeneration in dopaminergic neurons. Annals of Neurology, 2013, 74, 109-118.	5.3	58
15	Glutathione depletion and overproduction both initiate degeneration of nigral dopaminergic neurons. Acta Neuropathologica, 2011, 121, 475-485.	7.7	51
16	Pharmacologically controlled, discontinuous GDNF gene therapy restores motor function in a rat model of Parkinson's disease. Neurobiology of Disease, 2014, 65, 35-42.	4.4	50
17	Adeno-associated Virus-mediated, Mifepristone-regulated Transgene Expression in the Brain. Molecular Therapy - Nucleic Acids, 2013, 2, e106.	5.1	44
18	Homogenous generation of dopaminergic neurons from multiple hiPSC lines by transient expression of transcription factors. Cell Death and Disease, 2019, 10, 898.	6.3	44

Sebastian Kügler

#	Article	IF	CITATIONS
19	Neuropeptide Y mitigates neuropathology and motor deficits in mouse models of Machado–Joseph disease. Human Molecular Genetics, 2015, 24, 5451-5463.	2.9	43
20	MRI-Guided Focused Ultrasound for Targeted Delivery of rAAV to the Brain. Methods in Molecular Biology, 2019, 1950, 177-197.	0.9	36
21	CX3CR1-deficient microglia shows impaired signalling of the transcription factor NRF2: Implications in tauopathies. Redox Biology, 2019, 22, 101118.	9.0	34
22	A MicroRNA124 Target Sequence Restores Astrocyte Specificity of gfaABC1D-Driven Transgene Expression in AAV-Mediated Gene Transfer. Molecular Therapy - Nucleic Acids, 2017, 8, 13-25.	5.1	31
23	Thalamocortical Connections Drive Intracortical Activation of Functional Columns in the MislaminatedReelerSomatosensory Cortex. Cerebral Cortex, 2015, 26, bhv257.	2.9	29
24	Pathophysiological Consequences of Neuronal α-Synuclein Overexpression: Impacts on Ion Homeostasis, Stress Signaling, Mitochondrial Integrity, and Electrical Activity. Frontiers in Molecular Neuroscience, 2018, 11, 49.	2.9	22
25	Strategy to enhance transgene expression in proximity of amyloid plaques in a mouse model of Alzheimer's disease. Theranostics, 2019, 9, 8127-8137.	10.0	22
26	Therapeutic efficacy of regulable GDNF expression for Huntington's and Parkinson's disease by a high-induction, background-free "GeneSwitch―vector. Experimental Neurology, 2018, 309, 79-90.	4.1	21
27	Dopamine promotes the neurodegenerative potential of βâ€synuclein. Journal of Neurochemistry, 2021, 156, 674-691.	3.9	19
28	Probing the function of glycinergic neurons in the mouse respiratory network using optogenetics. Respiratory Physiology and Neurobiology, 2019, 265, 141-152.	1.6	18
29	Increased protein expression from adenoviral shuttle plasmids and vectors by insertion of a small chimeric intron sequence. Journal of Virological Methods, 2004, 122, 73-77.	2.1	15
30	Dimerization propensities of Synucleins are not predictive for Synuclein aggregation. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2015, 1852, 1658-1664.	3.8	15
31	Tissue-Specific Promoters in the CNS. Methods in Molecular Biology, 2016, 1382, 81-91.	0.9	15
32	Dementia with Lewy bodies—associated ß-synuclein mutations V70M and P123H cause mutation-specific neuropathological lesions. Human Molecular Genetics, 2021, 30, 247-264.	2.9	12
33	Systemic AAV6-synapsin-GFP administration results in lower liver biodistribution, compared to AAV1&2 and AAV9, with neuronal expression following ultrasound-mediated brain delivery. Scientific Reports, 2021, 11, 1934.	3.3	12
34	Neuronal Trans-differentiation by Transcription Factors Ascl1 and Nurr1: Induction of a Dopaminergic Neurotransmitter Phenotype in Cortical GABAergic Neurons. Molecular Neurobiology, 2020, 57, 249-260.	4.0	11
35	Comparison of test systems for RNAinterference. Biochemical and Biophysical Research Communications, 2006, 341, 245-253.	2.1	10
36	The relevance of synuclein autoantibodies as a biomarker for Parkinson's disease. Molecular and Cellular Neurosciences, 2022, 121, 103746.	2.2	8

#	Article	IF	CITATIONS
37	Long-Term Assessment of AAV-Mediated Zinc Finger Nuclease Expression in the Mouse Brain. Frontiers in Molecular Neuroscience, 2017, 10, 142.	2.9	7
38	Patterning inconsistencies restrict the true potential of dopaminergic neurons derived from human induced pluripotent stem cells. Neural Regeneration Research, 2021, 16, 692.	3.0	7
39	Optimized pharmacological control over the AAV-Gene-Switch vector for regulable gene therapy. Molecular Therapy - Methods and Clinical Development, 2021, 23, 1-10.	4.1	5
40	α-Synuclein Impacts on Intrinsic Neuronal Network Activity Through Reduced Levels of Cyclic AMP and Diminished Numbers of Active Presynaptic Terminals. Frontiers in Molecular Neuroscience, 2022, 15, .	2.9	2
41	Pharmacologically Controlled Neurotrophic Factor Gene Therapy for Parkinson's Disease. , 2018, , 177-193.		1