Dietmar Dommenget

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4851576/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Distinct Off-Equatorial Zonal Wind Stress and Oceanic Responses for EP- and CP-Type ENSO Events. Journal of Climate, 2022, 35, 1423-1440.	3.2	2
2	GREB-ISM v1.0: A coupled ice sheet model for the Globally Resolved Energy Balance model for global simulations on timescales of 100 kyr. Geoscientific Model Development, 2022, 15, 3691-3719.	3.6	0
3	Multidecadal variability of ENSO in a recharge oscillator framework. Environmental Research Letters, 2022, 17, 074008.	5.2	3
4	Wind Spatial Structure Triggers ENSO's Oceanic Warm Water Volume Changes. Journal of Climate, 2021, 34, 1985-1999.	3.2	6
5	A diagnostic model for the large-scale tropical circulation based on moist static energy balance. Climate Dynamics, 2021, 57, 3159-3181.	3.8	3
6	Trans-basin Atlantic-Pacific connections further weakened by common model Pacific mean SST biases. Nature Communications, 2020, 11, 5677.	12.8	15
7	Conceptual deconstruction of the simulated precipitation response to climate change. Climate Dynamics, 2020, 55, 613-630.	3.8	2
8	Walker circulation controls ENSO atmospheric feedbacks in uncoupled and coupled climate model simulations. Climate Dynamics, 2020, 54, 2831-2846.	3.8	21
9	Simulated Tropical Precipitation Assessed across Three Major Phases of the Coupled Model Intercomparison Project (CMIP). Monthly Weather Review, 2020, 148, 3653-3680.	1.4	92
10	Reduced Complexity Model Intercomparison Project Phase 1: introduction and evaluation of global-mean temperature response. Geoscientific Model Development, 2020, 13, 5175-5190.	3.6	70
11	Basin Interactions and Predictability. , 2020, , 258-292.		3
12	The Monash Simple Climate Model experiments (MSCM-DB v1.0): an interactive database of mean climate, climate change, and scenario simulations. Geoscientific Model Development, 2019, 12, 2155-2179.	3.6	6
13	Higher frequency of Central Pacific El Niño events in recent decades relative to past centuries. Nature Geoscience, 2019, 12, 450-455.	12.9	192
14	Simulated future changes in ENSO dynamics in the framework of the linear recharge oscillator model. Climate Dynamics, 2019, 53, 4233-4248.	3.8	12
15	Pantropical climate interactions. Science, 2019, 363, .	12.6	419
16	A hydrological cycle model for the Globally Resolved Energy Balance (GREB) model v1.0. Geoscientific Model Development, 2019, 12, 425-440.	3.6	11
17	Separating the Influences of Land Warming, the Direct CO ₂ Effect, the Plant Physiological Effect, and SST Warming on Regional Precipitation Changes. Journal of Geophysical Research D: Atmospheres, 2019, 124, 624-640.	3.3	40
18	Error compensation of ENSO atmospheric feedbacks in climate models and its influence on simulated ENSO dynamics. Climate Dynamics, 2019, 53, 155-172	3.8	56

DIETMAR DOMMENGET

#	Article	IF	CITATIONS
19	Dynamics and Predictability of El Niño–Southern Oscillation: An Australian Perspective on Progress and Challenges. Bulletin of the American Meteorological Society, 2019, 100, 403-420.	3.3	46
20	What Controls ENSOâ€Amplitude Diversity in Climate Models?. Geophysical Research Letters, 2018, 45, 1989-1996.	4.0	18
21	ENSO Atmospheric Teleconnections and Their Response to Greenhouse Gas Forcing. Reviews of Geophysics, 2018, 56, 185-206.	23.0	330
22	An evaluation of ENSO dynamics in CMIP simulations in the framework of the recharge oscillator model. Climate Dynamics, 2018, 51, 1753-1771.	3.8	40
23	May common model biases reduce CMIP5's ability to simulate the recent Pacific La Niña-like cooling?. Climate Dynamics, 2018, 50, 1335-1351.	3.8	75
24	Mean-state dependence of ENSO atmospheric feedbacks in climate models. Climate Dynamics, 2018, 50, 3171-3194.	3.8	79
25	A Caveat Note on Tuning in the Development of Coupled Climate Models. Journal of Advances in Modeling Earth Systems, 2018, 10, 78-97.	3.8	10
26	An ensemble of AMIP simulations with prescribed land surface temperatures. Geoscientific Model Development, 2018, 11, 3865-3881.	3.6	12
27	Widespread Reemergence of Sea Surface Temperature Anomalies in the Global Oceans, Including Tropical Regions Forced by Reemerging Winds. Geophysical Research Letters, 2018, 45, 7683-7691.	4.0	15
28	El Niño–Southern Oscillation complexity. Nature, 2018, 559, 535-545.	27.8	702
29	Landâ€sea thermal contrast determines the trend of Walker circulation simulated in atmospheric general circulation models. Geophysical Research Letters, 2017, 44, 5854-5862.	4.0	13
30	The effects of remote SST forcings on ENSO dynamics, variability and diversity. Climate Dynamics, 2017, 49, 2605-2624.	3.8	37
31	Factors influencing the skill of synthesized satellite wind products in the tropical Pacific. Journal of Geophysical Research: Oceans, 2017, 122, 1072-1089.	2.6	15
32	Atmosphere-only GCM (ACCESS1.0) simulations with prescribed land surface temperatures. Geoscientific Model Development, 2016, 9, 2077-2098.	3.6	20
33	ENSO dynamics and diversity resulting from the recharge oscillator interacting with the slab ocean. Climate Dynamics, 2016, 46, 1665-1682.	3.8	11
34	The seasonally changing cloud feedbacks contribution to the ENSO seasonal phase-locking. Climate Dynamics, 2016, 47, 3661-3672.	3.8	26
35	The leading modes of decadal SST variability in the Southern Ocean in CMIP5 simulations. Climate Dynamics, 2016, 47, 1775-1792.	3.8	11
36	ENSO influence on the North Atlantic European climate: a non-linear and non-stationary approach. Climate Dynamics, 2016, 47, 2071-2084.	3.8	37

DIETMAR DOMMENGET

#	Article	IF	CITATIONS
37	The role of local atmospheric forcing on the modulation of the ocean mixed layer depth in reanalyses and a coupled single column ocean model. Climate Dynamics, 2016, 47, 2991-3010.	3.8	11
38	The fingerprint of global warming in the Tropical Pacific. Advances in Atmospheric Sciences, 2016, 33, 533-534.	4.3	0
39	Amplification of El Niño by cloud longwave coupling to atmospheric circulation. Nature Geoscience, 2016, 9, 106-110.	12.9	70
40	A simple model perturbed physics study of the simulated climate sensitivity uncertainty and its relation to control climate biases. Climate Dynamics, 2016, 46, 427-447.	3.8	10
41	Increased frequency of extreme LaÂNiña events under greenhouse warming. Nature Climate Change, 2015, 5, 132-137.	18.8	479
42	The influence of global sea surface temperature variability on the large-scale land surface temperature. Climate Dynamics, 2015, 44, 2159-2176.	3.8	12
43	MEETING SUMMARIES. Bulletin of the American Meteorological Society, 2015, 96, 1969-1972.	3.3	8
44	An evaluation of the CMIP3 and CMIP5 simulations in their skill of simulating the spatial structure of SST variability. Climate Dynamics, 2015, 44, 95-114.	3.8	38
45	Analysis of the Nonlinearity of El Niño–Southern Oscillation Teleconnections*. Journal of Climate, 2014, 27, 6225-6244.	3.2	110
46	Comparing the spatial structure of variability in two datasets against each other on the basis of EOF-modes. Climate Dynamics, 2014, 42, 1631-1648.	3.8	13
47	The eastward shift of the Walker Circulation in response to global warming and its relationship to ENSO variability. Climate Dynamics, 2014, 43, 2747-2763.	3.8	131
48	Analysis of the Slab Ocean El Nino atmospheric feedbacks in observed and simulated ENSO dynamics. Climate Dynamics, 2014, 42, 3187-3205.	3.8	32
49	Analysis of the non-linearity in the pattern and time evolution of El Niño southern oscillation. Climate Dynamics, 2013, 40, 2825-2847.	3.8	177
50	The Tropospheric Land–Sea Warming Contrast as the Driver of Tropical Sea Level Pressure Changes. Journal of Climate, 2013, 26, 1387-1402.	3.2	47
51	Comments on "The Relationship between Land–Ocean Surface Temperature Contrast and Radiative Forcing― Journal of Climate, 2012, 25, 3437-3440.	3.2	3
52	Analysis of the Model Climate Sensitivity Spread Forced by Mean Sea Surface Temperature Biases. Journal of Climate, 2012, 25, 7147-7162.	3.2	8
53	Influences of the tropical Indian and Atlantic Oceans on the predictability of ENSO. Geophysical Research Letters, 2012, 39, .	4.0	92
54	An objective analysis of the observed spatial structure of the tropical Indian Ocean SST variability. Climate Dynamics, 2011, 36, 2129-2145.	3.8	40

DIETMAR DOMMENGET

#	Article	IF	CITATIONS
55	Conceptual understanding of climate change with a globally resolved energy balance model. Climate Dynamics, 2011, 37, 2143-2165.	3.8	33
56	The Impact of North Atlantic–Arctic Multidecadal Variability on Northern Hemisphere Surface Air Temperature. Journal of Climate, 2010, 23, 5668-5677.	3.2	127
57	El Niño and La Niña amplitude asymmetry caused by atmospheric feedbacks. Geophysical Research Letters, 2010, 37, .	4.0	88
58	The slab ocean El Ni $ ilde{A}\pm$ o. Geophysical Research Letters, 2010, 37, .	4.0	48
59	Is the Indian Ocean SST variability a homogeneous diffusion process?. Climate Dynamics, 2009, 33, 535-547.	3.8	20
60	The Ocean's Role in Continental Climate Variability and Change. Journal of Climate, 2009, 22, 4939-4952.	3.2	66
61	Tropical Atmosphere–Ocean Interactions in a Conceptual Framework. Journal of Climate, 2009, 22, 550-567.	3.2	125
62	Predictions of Indian Ocean SST Indices with a Simple Statistical Model: A Null Hypothesis. Journal of Climate, 2009, 22, 4930-4938.	3.2	30
63	Generation of hyper climate modes. Geophysical Research Letters, 2008, 35, .	4.0	59
64	The Annual Peak in the SST Anomaly Spectrum. Journal of Climate, 2008, 21, 2810-2823.	3.2	9
65	Evaluating EOF modes against a stochastic null hypothesis. Climate Dynamics, 2007, 28, 517-531.	3.8	49
66	Ocean mixed layer depth: A subsurface proxy of ocean-atmosphere variability. Journal of Geophysical Research, 2006, 111, .	3.3	167
67	Impacts of the tropical Indian and Atlantic Oceans on ENSO. Geophysical Research Letters, 2006, 33, .	4.0	84
68	Assessing ENSO Simulations and Predictions Using Adjoint Ocean State Estimation. Journal of Climate, 2004, 17, 4301-4315.	3.2	17
69	A Cautionary Note on the Interpretation of EOFs. Journal of Climate, 2002, 15, 216-225.	3.2	317
70	Analysis of observed and simulated SST spectra in the midlatitudes. Climate Dynamics, 2002, 19, 277-288.	3.8	39
71	The role of ocean dynamics in producing decadal climate variability in the North Pacific. Climate Dynamics, 2001, 18, 51-70.	3.8	89
72	Interannual to Decadal Variability in the Tropical Atlantic. Journal of Climate, 2000, 13, 777-792.	3.2	115

#	Article	IF	CITATIONS
73	Atmospheric response to sea surface temperature anomalies during El Niño 1997/98 as simulated by ECHAM4. Quarterly Journal of the Royal Meteorological Society, 2000, 126, 2175-2198.	2.7	2
74	Atmospheric response to sea surface temperature anomalies during El Nino 1997/98 as simulated by ECHAM4. Quarterly Journal of the Royal Meteorological Society, 2000, 126, 2175-2198.	2.7	13
75	Interdecadal interactions between the tropics and midlatitudes in the Pacific Basin. Geophysical Research Letters, 1999, 26, 615-618.	4.0	190
76	Origins of the midlatitude Pacific decadal variability. Geophysical Research Letters, 1999, 26, 1453-1456.	4.0	77
77	The Role of Indian Ocean Sea Surface Temperature in Forcing East African Rainfall Anomalies during December–January 1997/98. Journal of Climate, 1999, 12, 3497-3504.	3.2	129