
Naomi Ori

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4851441/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	The VIL gene CRAWLING ELEPHANT controls maturation and differentiation in tomato via polycomb silencing. PLoS Genetics, 2022, 18, e1009633.	3.5	2
2	<i>CLASS-II KNOX</i> genes coordinate spatial and temporal ripening in tomato. Plant Physiology, 2022, 190, 657-668.	4.8	11
3	Coordination of differentiation rate and local patterning in compoundâ€leaf development. New Phytologist, 2021, 229, 3558-3572.	7.3	9
4	Coordinating the morphogenesis-differentiation balance by tweaking the cytokinin-gibberellin equilibrium. PLoS Genetics, 2021, 17, e1009537.	3.5	14
5	Sucrose promotes stem branching through cytokinin. Plant Physiology, 2021, 185, 1708-1721.	4.8	54
6	Characterization of the cytokinin sensor TCSv2 in arabidopsis and tomato. Plant Methods, 2020, 16, 152.	4.3	21
7	Genetic dissection of the auxin response network. Nature Plants, 2020, 6, 1082-1090.	9.3	23
8	Leaflet initiation and blade expansion are separable in compound leaf development. Plant Journal, 2020, 104, 1073-1087.	5.7	22
9	Multiple Auxin-Response Regulators Enable Stability and Variability in Leaf Development. Current Biology, 2019, 29, 1746-1759.e5.	3.9	34
10	Dissecting the Biological Functions of ARF and Aux/IAA Genes. Plant Cell, 2019, 31, 1210-1211.	6.6	24
11	The Interaction between DELLA and ARF/IAA Mediates Crosstalk between Gibberellin and Auxin Signaling to Control Fruit Initiation in Tomato. Plant Cell, 2018, 30, 1710-1728.	6.6	129
12	The KNOXI Transcription Factor SHOOT MERISTEMLESS Regulates Floral Fate in Arabidopsis. Plant Cell, 2018, 30, 1309-1321.	6.6	23
13	Etiolated Stem Branching Is a Result of Systemic Signaling Associated with Sucrose Level. Plant Physiology, 2017, 175, 734-745.	4.8	24
14	Auxin Response Dynamics During Wild-Type and entire Flower Development in Tomato. Plant and Cell Physiology, 2017, 58, 1661-1672.	3.1	50
15	CLAUSA is a MYB Transcription Factor that Promotes Leaf Differentiation by Attenuating Cytokinin Signaling. Plant Cell, 2016, 28, tpc.00211.2016.	6.6	40
16	Auxinâ€mediated lamina growth in tomato leaves is restricted by two parallel mechanisms. Plant Journal, 2016, 86, 443-457.	5.7	50
17	Hormones in tomato leaf development. Developmental Biology, 2016, 419, 132-142.	2.0	65
18	<scp>CLAUSA</scp> restricts tomato leaf morphogenesis and <i><scp>GOBLET</scp></i> expression. Plant Journal, 2015, 83, 888-902.	5.7	21

NAOMI ORI

#	Article	IF	CITATIONS
19	Compound leaf development in model plant species. Current Opinion in Plant Biology, 2015, 23, 61-69.	7.1	85
20	Leaf development and morphogenesis. Development (Cambridge), 2014, 141, 4219-4230.	2.5	199
21	Quantitative phenotyping of leaf margins in three dimensions, demonstrated on KNOTTED and TCP trangenics in Arabidopsis. Journal of Experimental Botany, 2014, 65, 2071-2077.	4.8	13
22	A Role for APETALA1/FRUITFULL Transcription Factors in Tomato Leaf Development Â. Plant Cell, 2013, 25, 2070-2083.	6.6	86
23	The Tomato Leaf as a Model System for Organogenesis. Methods in Molecular Biology, 2013, 959, 1-19.	0.9	13
24	Class I TCPs modulate cytokinin-induced branching and meristematic activity in tomato. Plant Signaling and Behavior, 2012, 7, 807-810.	2.4	23
25	Auxin and LANCEOLATE affect leaf shape in tomato via different developmental processes. Plant Signaling and Behavior, 2012, 7, 1255-1257.	2.4	20
26	Release of Apical Dominance in Potato Tuber Is Accompanied by Programmed Cell Death in the Apical Bud Meristem. Plant Physiology, 2012, 158, 2053-2067.	4.8	51
27	ENTIRE and GOBLET promote leaflet development in tomato by modulating auxin response. Plant Journal, 2012, 70, 903-915.	5.7	72
28	Gibberellin partly mediates LANCEOLATE activity in tomato. Plant Journal, 2011, 68, 571-582.	5.7	92
29	Negative reciprocal interactions between gibberellin and cytokinin in tomato. New Phytologist, 2011, 190, 609-617.	7.3	79
30	Dynamic growth program regulated by LANCEOLATE enables flexible leaf patterning. Development (Cambridge), 2011, 138, 695-704.	2.5	75
31	Cytokinin Regulates Compound Leaf Development in Tomato Â. Plant Cell, 2010, 22, 3206-3217.	6.6	152
32	The NAC-domain transcription factor GOBLET specifies leaflet boundaries in compound tomato leaves. Development (Cambridge), 2009, 136, 823-832.	2.5	286
33	Stage-Specific Regulation of <i>Solanum lycopersicum</i> Leaf Maturation by Class 1 KNOTTED1-LIKE HOMEOBOX Proteins Â. Plant Cell, 2009, 21, 3078-3092.	6.6	148
34	Mechanisms of Cross Talk between Gibberellin and Other Hormones. Plant Physiology, 2007, 144, 1240-1246.	4.8	427
35	Regulation of LANCEOLATE by miR319 is required for compound-leaf development in tomato. Nature Genetics, 2007, 39, 787-791.	21.4	474
36	Meristem maintenance and compound-leaf patterning utilize common genetic mechanisms in tomato. Planta, 2007, 226, 941-951.	3.2	41

NAOMI ORI

#	Article	IF	CITATIONS
37	The role of hormones in shoot apical meristem function. Current Opinion in Plant Biology, 2006, 9, 484-489.	7.1	207
38	Arabidopsis KNOXI Proteins Activate Cytokinin Biosynthesis. Current Biology, 2005, 15, 1566-1571.	3.9	474
39	Cross Talk between Gibberellin and Cytokinin: The Arabidopsis GA Response Inhibitor SPINDLY Plays a Positive Role in Cytokinin Signaling. Plant Cell, 2005, 17, 92-102.	6.6	284
40	Plant morphogenesis and KNOX genes. Nature Genetics, 2002, 31, 121-122.	21.4	22