Hao Peng

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/485135/publications.pdf

Version: 2024-02-01

69 1,871 23 40
papers citations h-index g-index

73 73 73 1174
all docs docs citations times ranked citing authors

#	Article	IF	CITATIONS
1	Removal of chromium from wastewater by membrane filtration, chemical precipitation, ion exchange, adsorption electrocoagulation, electrochemical reduction, electrodialysis, electrodeionization, photocatalysis and nanotechnology: a review. Environmental Chemistry Letters, 2020, 18, 2055-2068.	8.3	279
2	Fractional removal of manganese and ammonia nitrogen from electrolytic metal manganese residue leachate using carbonate and struvite precipitation. Water Research, 2019, 153, 229-238.	5.3	143
3	A literature review on leaching and recovery of vanadium. Journal of Environmental Chemical Engineering, 2019, 7, 103313.	3.3	97
4	Enhanced photo-Fenton degradation of tetracycline using TiO2-coated α-Fe2O3 core–shell heterojunction. Journal of Industrial and Engineering Chemistry, 2018, 68, 14-23.	2.9	89
5	Enhanced adsorption capacity of MgO/N-doped active carbon derived from sugarcane bagasse. Bioresource Technology, 2020, 297, 122413.	4.8	64
6	Efficient adsorption of ciprofloxacin using Ga2S3/S-modified biochar via the high-temperature sulfurization. Bioresource Technology, 2021, 334, 125238.	4.8	55
7	Selective leaching of vanadium from chromium residue intensified by electric field. Journal of Environmental Chemical Engineering, 2015, 3, 1252-1257.	3.3	51
8	MgO nanosheets with N-doped carbon coating for the efficient visible-light photocatalysis. Journal of Industrial and Engineering Chemistry, 2019, 76, 288-295.	2.9	51
9	Core-shell Sm2O3@ZnO nano-heterostructure for the visible light driven photocatalytic performance. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2019, 560, 244-251.	2.3	46
10	Efficient Removal of Hexavalent Chromium from Wastewater with Electro-Reduction. Processes, 2019, 7, 41.	1.3	43
11	Core-shell structured α-Fe2O3@CeO2 heterojunction for the enhanced visible-light photocatalytic activity. Materials Research Bulletin, 2018, 101, 20-28.	2.7	42
12	Leaching Kinetics of Vanadium with Electro-oxidation and H ₂ O ₂ in Alkaline Medium. Energy & Energy	2.5	37
13	High-efficient recovery of chromium (VI) with lead sulfate. Journal of the Taiwan Institute of Chemical Engineers, 2018, 85, 149-154.	2.7	35
14	Leaching kinetics of vanadium from calcification roasting converter vanadium slag in acidic medium. Journal of Environmental Chemical Engineering, 2018, 6, 5119-5124.	3.3	35
15	N-Doped Carbon-Coated ZnS with Sulfur-Vacancy Defect for Enhanced Photocatalytic Activity in the Visible Light Region. Nanomaterials, 2019, 9, 1657.	1.9	35
16	Photocatalytic reduction of CO2 over Sm-doped TiO2 nanoparticles. Journal of Rare Earths, 2020, 38, 1297-1304.	2.5	33
17	Adsorption kinetics and isotherm of vanadium with melamine. Water Science and Technology, 2017, 75, 2316-2321.	1.2	31
18	Preparation and characterization of CuxZn1-xS nanodisks for the efficient visible light photocatalytic activity. Journal of Environmental Chemical Engineering, 2018, 6, 9-18.	3.3	29

#	Article	IF	Citations
19	Carbon-coated Mg–Al layered double oxide nanosheets with enhanced removal of hexavalent chromium. Journal of Industrial and Engineering Chemistry, 2019, 80, 53-64.	2.9	29
20	Synthesis of ZnFe2O4/B,N-codoped biochar via microwave-assisted pyrolysis for enhancing adsorption-photocatalytic elimination of tetracycline hydrochloride. Industrial Crops and Products, 2021, 172, 114066.	2.5	28
21	Enhanced photocatalytic capacity of ZnS–ZnO–Sm2O3 composites for the removal of dyes and antibiotics in visible light region. Journal of Industrial and Engineering Chemistry, 2020, 88, 186-195.	2.9	28
22	Ag-decorated core-shell Sm2O3@TiO2 nanocomposites with enhanced visible-light photocatalytic performance. Journal of Physics and Chemistry of Solids, 2018, 123, 206-215.	1.9	27
23	Electrochemical Removal of Chromium (VI) from Wastewater. Applied Sciences (Switzerland), 2019, 9, 1156.	1.3	26
24	Removal and recovery of vanadium from waste by chemical precipitation, adsorption, solvent extraction, remediation, photo-catalyst reduction and membrane filtration. A review. Environmental Chemistry Letters, 2022, 20, 1763-1776.	8.3	24
25	Adsorption Process of Vanadium (V) with Melamine. Water, Air, and Soil Pollution, 2017, 228, 1.	1.1	22
26	Sm2O3 nanoparticles coated with N-doped carbon for enhanced visible-light photocatalysis. Journal of Physics and Chemistry of Solids, 2019, 130, 180-188.	1.9	22
27	Highly Efficient Recovery of Vanadium and Chromium: Optimized by Response Surface Methodology. ACS Omega, 2019, 4, 904-910.	1.6	20
28	Efficient solar-light photodegradation of tetracycline hydrochloride using BiVO4/MoO3 composites. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2021, 621, 126599.	2.3	20
29	Leaching of vanadium and chromium from converter vanadium slag intensified with surface wettability. Journal of Central South University, 2018, 25, 1317-1325.	1.2	19
30	Recovery and Separation of Vanadium and Chromium by Two-Step Alkaline Leaching Enhanced with an Electric Field and H ₂ O ₂ . ACS Omega, 2020, 5, 5340-5345.	1.6	19
31	Recovery of chromium by calcium-roasting, sodium-roasting, acidic leaching, alkaline leaching and sub-molten technology: a review. Environmental Chemistry Letters, 2021, 19, 1383-1393.	8.3	19
32	Solar-light induced photoreduction of CO2 using nonthermal plasma sulfurized MoO3@MoS2-CuS composites. Journal of Environmental Chemical Engineering, 2021, 9, 105469.	3.3	19
33	Step-Adsorption of Vanadium (V) and Chromium (VI) in the Leaching Solution with Melamine. Scientific Reports, 2020, 10, 6326.	1.6	18
34	Vanadium properties, toxicity, mineral sources and extraction methods: a review. Environmental Chemistry Letters, 2022, 20, 1249-1263.	8.3	18
35	High-temperature sulfurized synthesis of MnxCd1-xS composites for enhancing solar-light driven H2 evolution. International Journal of Hydrogen Energy, 2022, 47, 9925-9933.	3.8	17
36	A green method to leach vanadium and chromium from residue using NaOH-H2O2. Scientific Reports, 2018, 8, 426.	1.6	16

#	Article	IF	Citations
37	Nonthermal plasma sulfurized CuInS2/S-doped MgO nanosheets for efficient solar-light photocatalytic degradation of tetracycline. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2021, 625, 126900.	2.3	16
38	Efficient solar-light photocatalytic activity of FeS/S-doped MgO composites for tetracycline removal. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2021, 626, 127123.	2.3	16
39	Efficient whole-cell catalysis for 5-aminovalerate production from L-lysine by using engineered Escherichia coli with ethanol pretreatment. Scientific Reports, 2020, 10, 990.	1.6	16
40	Reduction behavior of chromium(VI) with oxalic acid in aqueous solution. Scientific Reports, 2020, 10, 17732.	1.6	15
41	Oxidative Leaching Kinetics of Vanadium from the Vanadium-Chromium-Reducing Residue with K ₂ Cr ₂ O ₇ . ACS Omega, 2020, 5, 8777-8783.	1.6	15
42	Direct advanced oxidation process for chromium(III) with sulfate free radicals. SN Applied Sciences, 2019, 1, 1.	1.5	12
43	A Novel Technology for Recovery and Separation of Vanadium and Chromium from Vanadium-Chromium Reducing Residue. Applied Sciences (Switzerland), 2020, 10, 198.	1.3	12
44	In2S3-NiS co-decorated MoO3@MoS2 composites for enhancing the solar-light induced CO2 photoreduction activity. International Journal of Hydrogen Energy, 2021, 46, 36848-36858.	3.8	12
45	S-defected In2S3/ZnS nanospheres for enhancing solar-light photocatalytic capacity. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2021, 627, 127126.	2.3	12
46	High-temperature sulfurized synthesis of MnxCd1â^'xS/S-kaolin composites for efficient solar-light driven H2 evolution. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2022, 632, 127772.	2.3	12
47	Leaching Kinetics of Vanadium from Calcium-Roasting High-Chromium Vanadium Slag Enhanced by Electric Field. ACS Omega, 2020, 5, 17664-17671.	1.6	11
48	Efficient solar-light induced photocatalytic capacity of Mg-Al LDO coupled with N-defected g-C3N4. Chemical Physics Letters, 2021, 779, 138846.	1.2	11
49	Thermodynamic and Kinetic Studies on Adsorption of Vanadium with Glutamic Acid. ACS Omega, 2021, 6, 21563-21570.	1.6	10
50	Efficient solar-light photocatalytic H2 evolution of Mn0.5Cd0.5S coupling with S,N-codoped carbon. Journal of Industrial and Engineering Chemistry, 2022, 106, 225-232.	2.9	10
51	Recovery of vanadium with urea in acidic medium. Environmental Chemistry Letters, 2019, 17, 1867-1871.	8.3	9
52	Highly efficient oxidation of chromium (III) with hydrogen peroxide in alkaline medium. Water Science and Technology, 2019, 79, 366-374.	1.2	9
53	Efficient Removal of Cr (VI) with Biochar and Optimized Parameters by Response Surface Methodology. Processes, 2021, 9, 889.	1.3	8
54	Novel Technology for Vanadium and Chromium Extraction with KMnO ₄ in an Alkaline Medium. ACS Omega, 2021, 6, 27478-27484.	1.6	8

#	Article	IF	CITATIONS
55	Enhancing the photocatalytic activity of Cu _{0.25} Zn _{0.75} S nanodisks by metallic Ag loading in the visible-light region. RSC Advances, 2019, 9, 13787-13796.	1.7	7
56	Adsorption of Chromium (III) on Melamine: Kinetic, Isotherm, Thermodynamics and Mechanism Analysis. IOP Conference Series: Earth and Environmental Science, 2020, 512, 012076.	0.2	7
57	Adsorption behavior of Fe (III) in aqueous solution on melamine. Water Science and Technology, 2020, 82, 1848-1857.	1.2	6
58	One-pot synthesis of La2O3-decorated Mg-Al oxides nanosheets for solar-light driven photocatalytic activity. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2020, 604, 125316.	2.3	6
59	Oxidative Leaching of Vanadium from Vanadium-chromium Reducing Residue with MnO ₂ . IOP Conference Series: Materials Science and Engineering, 2020, 730, 012041.	0.3	6
60	Highly efficient oxidative-alkaline-leaching process of vanadium-chromium reducing residue and parameters optimization by response surface methodology. Environmental Technology (United) Tj ETQq0 0 0 rg	;BT 10 verlo	ock510 Tf 50 5
61	Chaotic Phenomenon in Vanadium Redox Flow Battery. International Journal of Petrochemical Science & Engineering, 2017, 2, .	0.2	5
62	Electrochemical oscillation of vanadium ions in anolyte. Journal of Electrochemical Science and Engineering, 2017, 7, 139.	1.6	5
63	Efficient Recovery of Vanadium from High-Chromium Vanadium Slag with Calcium-Roasting Acidic Leaching. Minerals (Basel, Switzerland), 2022, 12, 160.	0.8	5
64	Vanadium recovery by glycine precipitation. Environmental Chemistry Letters, 2022, 20, 1569-1575.	8.3	5
65	A Clean Method for Vanadium (V) Reduction with Oxalic Acid. Metals, 2022, 12, 557.	1.0	3
66	Secondary leaching of vanadium from vanadium tailing intensified with CaF2. IOP Conference Series: Earth and Environmental Science, 2019, 233, 042048.	0.2	2
67	Effect of Surfactant on Water Content of Phosphogypsum. Applied Sciences (Switzerland), 2019, 9, 1684.	1.3	2
68	Thermodynamics Analysis and Removal of P in a P-(M)-H2O System. Molecules, 2021, 26, 3342.	1.7	2
69	A Fantasy and Magical Adsorbent for Heavy Metal Ions Removal: Melamine. Journal of Physics: Conference Series, 2020, 1699, 012019.	0.3	O