Wenjing Yang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/485109/publications.pdf Version: 2024-02-01

WENLING YANG

#	Article	IF	CITATIONS
1	A strawberry-like Ag-decorated barium titanate enhances piezoelectric and antibacterial activities of polymer scaffold. Nano Energy, 2020, 74, 104825.	16.0	264
2	Accelerated degradation of HAP/PLLA bone scaffold by PGA blending facilitates bioactivity and osteoconductivity. Bioactive Materials, 2021, 6, 490-502.	15.6	236
3	Functionalized BaTiO3 enhances piezoelectric effect towards cell response of bone scaffold. Colloids and Surfaces B: Biointerfaces, 2020, 185, 110587.	5.0	102
4	A magnetic micro-environment in scaffolds for stimulating bone regeneration. Materials and Design, 2020, 185, 108275.	7.0	101
5	Laser additive manufacturing of Zn-2Al part for bone repair: Formability, microstructure and properties. Journal of Alloys and Compounds, 2019, 798, 606-615.	5.5	93
6	Surface modification of nanodiamond: Toward the dispersion of reinforced phase in poly-l-lactic acid scaffolds. International Journal of Biological Macromolecules, 2019, 126, 1116-1124.	7.5	86
7	Graphene oxide assists polyvinylidene fluoride scaffold to reconstruct electrical microenvironment of bone tissue. Materials and Design, 2020, 190, 108564.	7.0	81
8	Graphene oxide-driven interfacial coupling in laser 3D printed PEEK/PVA scaffolds for bone regeneration. Virtual and Physical Prototyping, 2020, 15, 211-226.	10.4	70
9	Magnetically actuated bone scaffold: Microstructure, cell response and osteogenesis. Composites Part B: Engineering, 2020, 192, 107986.	12.0	67
10	Mechanical Alloying of Immiscible Metallic Systems: Process, Microstructure, and Mechanism. Advanced Engineering Materials, 2021, 23, 2001098.	3.5	67
11	Metal organic frameworks as a compatible reinforcement in a biopolymer bone scaffold. Materials Chemistry Frontiers, 2020, 4, 973-984.	5.9	67
12	Organic montmorillonite produced an interlayer locking effect in a polymer scaffold to enhance interfacial bonding. Materials Chemistry Frontiers, 2020, 4, 2398-2408.	5.9	64
13	In Situ Generation of Hydroxyapatite on Biopolymer Particles for Fabrication of Bone Scaffolds Owning Bioactivity. ACS Applied Materials & Interfaces, 2020, 12, 46743-46755.	8.0	58
14	Electrostatic self-assembly of pFe3O4 nanoparticles on graphene oxide: A co-dispersed nanosystem reinforces PLLA scaffolds. Journal of Advanced Research, 2020, 24, 191-203.	9.5	58
15	Synthesis of a mace-like cellulose nanocrystal@Ag nanosystem via in-situ growth for antibacterial activities of poly-L-lactide scaffold. Carbohydrate Polymers, 2021, 262, 117937.	10.2	56
16	Selective laser melted Fe-Mn bone scaffold: microstructure, corrosion behavior and cell response. Materials Research Express, 2020, 7, 015404.	1.6	50
17	Phosphonic Acid Coupling Agent Modification of HAP Nanoparticles: Interfacial Effects in PLLA/HAP Bone Scaffold. Polymers, 2020, 12, 199.	4.5	47
18	Surface modification enhances interfacial bonding in PLLA/MgO bone scaffold. Materials Science and Engineering C, 2020, 108, 110486.	7.3	46

WENJING YANG

#	Article	IF	CITATIONS
19	A co-dispersed nanosystem of strontium-anchored reduced graphene oxide to enhance the bioactivity and mechanical property of polymer scaffolds. Materials Chemistry Frontiers, 2021, 5, 2373-2386.	5.9	41
20	Mechanically driving supersaturated Fe–Mg solid solution for bone implant: Preparation, solubility and degradation. Composites Part B: Engineering, 2021, 207, 108564.	12.0	35
21	Cellulose nanocrystals as biobased nucleation agents in poly-l-lactide scaffold: Crystallization behavior and mechanical properties. Polymer Testing, 2020, 85, 106458.	4.8	34
22	Graphene Oxide Induces Ester Bonds Hydrolysis of Poly-l-lactic Acid Scaffold to Accelerate Degradation. International Journal of Bioprinting, 2019, 6, 249.	3.4	32
23	MnO2 catalysis of oxygen reduction to accelerate the degradation of Fe-C composites for biomedical applications. Corrosion Science, 2020, 170, 108679.	6.6	31
24	Interfacial reinforcement in a poly-l-lactic acid/mesoporous bioactive glass scaffold via polydopamine. Colloids and Surfaces B: Biointerfaces, 2018, 170, 45-53.	5.0	30
25	A peritectic phase refines the microstructure and enhances Zn implants. Journal of Materials Research and Technology, 2020, 9, 2623-2634.	5.8	30
26	Physical stimulations and their osteogenesis-inducing mechanisms. International Journal of Bioprinting, 2018, 4, 138.	3.4	30
27	A continuous net-like eutectic structure enhances the corrosion resistance of Mg alloys. International Journal of Bioprinting, 2019, 5, 207.	3.4	15
28	Polyaniline Protrusions on MoS ₂ Nanosheets for PVDF Scaffolds with Improved Electrical Stimulation. ACS Applied Nano Materials, 2021, 4, 13955-13966.	5.0	15
29	Rivet-Inspired Modification of Carbon Nanotubes by In Situ-Reduced Ag Nanoparticles To Enhance the Strength and Ductility of Zn Implants. ACS Biomaterials Science and Engineering, 2021, 7, 5484-5496.	5.2	11
30	Montmorillonite reduces crystallinity of polyâ€lâ€lactic acid scaffolds to accelerate degradation. Polymers for Advanced Technologies, 2019, 30, 2425-2435.	3.2	10
31	In-situ grown Ag on magnetic halloysite nanotubes in scaffolds: Antibacterial, biocompatibility and mechanical properties. Ceramics International, 2021, 47, 32756-32765.	4.8	6
32	Mnâ€promoting formation of a longâ€period stackingâ€ordered phase in laserâ€melted Mg alloys to enhance degradation resistance. Materials and Corrosion - Werkstoffe Und Korrosion, 2020, 71, 553-563.	1.5	3
33	Stress-Induced Dual-Phase Structure to Accelerate Degradation of the Fe Implant. ACS Biomaterials Science and Engineering, 2022, 8, 1841-1851.	5.2	1