
## YunSeop Yu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4851011/publications.pdf Version: 2024-02-01



YUNSFOR YU

| #  | Article                                                                                                                                                                                        | IF  | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 1  | Electrical Coupling for Monolithic 3-D Integrated Circuit Consisting of Feedback Field-Effect<br>Transistors. Journal of Nanoscience and Nanotechnology, 2021, 21, 4293-4297.                  | 0.9 | 0         |
| 2  | Interface Trap Charge Effects of Monolithic 3D Junctionless Field-Effect Transistors (JLFET) Inverter.<br>Journal of Nanoscience and Nanotechnology, 2021, 21, 4252-4257.                      | 0.9 | 0         |
| 3  | Macro-Modeling for N-Type Feedback Field-Effect Transistor for Circuit Simulation. Micromachines, 2021, 12, 1174.                                                                              | 2.9 | 2         |
| 4  | Electrical Coupling of Monolithic 3D Inverters (M3INVs): MOSFET and Junctionless FET. Applied Sciences (Switzerland), 2021, 11, 277.                                                           | 2.5 | 1         |
| 5  | Monolithic 3D Inverter with Interface Charge: Parameter Extraction and Circuit Simulation. Applied Sciences (Switzerland), 2021, 11, 12151.                                                    | 2.5 | 1         |
| 6  | Circuit Simulation Considering Electrical Coupling in Monolithic 3D Logics with Junctionless FETs.<br>Micromachines, 2020, 11, 887.                                                            | 2.9 | 1         |
| 7  | Compact Trap-Assisted-Tunneling Model for Line Tunneling Field-Effect-Transistor Devices. Applied Sciences (Switzerland), 2020, 10, 4475.                                                      | 2.5 | 7         |
| 8  | Investigation of Monolithic 3D Integrated Circuit Inverter with Feedback Field Effect Transistors<br>Using TCAD Simulation. Micromachines, 2020, 11, 852.                                      | 2.9 | 8         |
| 9  | Comparison of Two-Types of Monolithic 3D Inverter Consisting of MOSFETs and Junctionless FETs. , 2020, , .                                                                                     |     | 1         |
| 10 | Compact device modelling of interface trap charges with quantum capacitance in<br>MoS <sub>2</sub> -based field-effect transistors. Semiconductor Science and Technology, 2020, 35,<br>045023. | 2.0 | 4         |
| 11 | Physically Consistent Method for Calculating Trap-Assisted-Tunneling Current Applied to Line<br>Tunneling Field-Effect Transistor. IEEE Transactions on Electron Devices, 2020, 67, 2106-2112. | 3.0 | 2         |
| 12 | Electrical Coupling and Simulation of Monolithic 3D Logic Circuits and Static Random Access Memory. Micromachines, 2019, 10, 637.                                                              | 2.9 | 7         |
| 13 | Si/Ge Hetero Tunnel Field-Effect Transistor with Junctionless Channel Based on Nanowire. Journal of<br>Nanoscience and Nanotechnology, 2019, 19, 6750-6754.                                    | 0.9 | 2         |
| 14 | Impact of Quantum Confinement on Band-to-Band Tunneling of Line-Tunneling Type L-Shaped Tunnel<br>Field-Effect Transistor. IEEE Transactions on Electron Devices, 2019, 66, 2010-2016.         | 3.0 | 26        |
| 15 | Compact Model for L-Shaped Tunnel Field-Effect Transistor Including the 2D Region. Applied Sciences<br>(Switzerland), 2019, 9, 3716.                                                           | 2.5 | 6         |
| 16 | Parameter Extraction and Power/Performance Analysis of Monolithic 3-D Inverter (M3INV). IEEE<br>Transactions on Electron Devices, 2019, 66, 1006-1011.                                         | 3.0 | 6         |
| 17 | Optimization of Line-Tunneling Type L-Shaped Tunnel Field-Effect-Transistor for Steep Subthreshold<br>Slope. Electronics (Switzerland), 2018, 7, 275.                                          | 3.1 | 5         |
| 18 | Investigation of Corner Effect and Identification of Tunneling Regimes in L-Shaped Tunnel<br>Field-Effect-Transistor. Journal of Nanoscience and Nanotechnology, 2018, 18, 6575-6583.          | 0.9 | 3         |

| #  | Article                                                                                                                                                                                                       | IF  | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 19 | Workfunction Engineering of A Pocket Tunnel Field-Effect Transistor with A Dual Material Gate.<br>Journal of the Korean Physical Society, 2018, 73, 308-313.                                                  | 0.7 | 0         |
| 20 | Work-Function Engineering of Source-Overlapped Dual-Gate Tunnel Field-Effect Transistor. Journal of<br>Nanoscience and Nanotechnology, 2018, 18, 5925-5931.                                                   | 0.9 | 8         |
| 21 | Electrical Characteristics of Ge/Si-Based Source Pocket Tunnel Field-Effect Transistors. Journal of<br>Nanoscience and Nanotechnology, 2018, 18, 5887-5892.                                                   | 0.9 | 2         |
| 22 | Temperature-Dependent Electrical Characterization of Amorphous Indium Zinc Oxide Thin-Film<br>Transistors. IEEE Transactions on Electron Devices, 2017, 64, 3183-3188.                                        | 3.0 | 6         |
| 23 | Metal oxide-graphene field-effect transistor: interface trap density extraction model. Beilstein<br>Journal of Nanotechnology, 2016, 7, 1368-1376.                                                            | 2.8 | 6         |
| 24 | One electron-controlled multiple-valued dynamic random-access-memory. AIP Advances, 2016, 6, 025320.                                                                                                          | 1.3 | 1         |
| 25 | Electrical Coupling of Monolithic 3-D Inverters. IEEE Transactions on Electron Devices, 2016, , 1-4.                                                                                                          | 3.0 | 18        |
| 26 | Improvements in adhesion force and smart embedded programming of wall inspection robot. Journal of Supercomputing, 2016, 72, 2635-2650.                                                                       | 3.6 | 1         |
| 27 | Two-dimensional (2D) transition metal dichalcogenide semiconductor field-effect transistors: the interface trap density extraction and compact model. Semiconductor Science and Technology, 2015, 30, 075010. | 2.0 | 11        |
| 28 | Coupling capacitance in face-to-face (F2F) bonded 3D ICs: Trends and implications. , 2015, , .                                                                                                                |     | 2         |
| 29 | Interface trap density distribution in 3D sequential Integrated-Circuit and Its effect. The Journal of the Korean Institute of Information and Communication Engineering, 2015, 19, 2899-2904.                | 0.1 | 1         |
| 30 | Design challenges and solutions for ultra-high-density monolithic 3D ICs. , 2014, , .                                                                                                                         |     | 39        |
| 31 | Fall-Detection Algorithm Using 3-Axis Acceleration: Combination with Simple Threshold and Hidden<br>Markov Model. Journal of Applied Mathematics, 2014, 2014, 1-8.                                            | 0.9 | 57        |
| 32 | A Unified Analytical Current Model for N- and P-Type Accumulation-Mode (Junctionless)<br>Surrounding-Gate Nanowire FETs. IEEE Transactions on Electron Devices, 2014, 61, 3007-3010.                          | 3.0 | 26        |
| 33 | Barrier Height at the Graphene and Carbon Nanotube Junction. IEEE Transactions on Electron Devices, 2014, 61, 2203-2207.                                                                                      | 3.0 | 13        |
| 34 | Compact Model of a pH Sensor with Depletion-Mode Silicon-Nanowire Field-Effect Transistor. Journal of Semiconductor Technology and Science, 2014, 14, 451-456.                                                | 0.4 | 2         |
| 35 | Interface Trap Density of Gate-All-Around Silicon Nanowire Field-Effect Transistors With TiN Gate:<br>Extraction and Compact Model. IEEE Transactions on Electron Devices, 2013, 60, 2457-2463.               | 3.0 | 18        |
| 36 | Fall Recognition Algorithm Using Gravity-Weighted 3-Axis Accelerometer Data. Journal of the Institute of Electronics and Information Engineers, 2013, 50, 254-259.                                            | 0.0 | 5         |

| #  | Article                                                                                                                                                                                                                                                                | IF  | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 37 | Full-Range Analytic Drain Current Model for Depletion-Mode Long-Channel Surrounding-Gate<br>Nanowire Field-Effect Transistor. Journal of Semiconductor Technology and Science, 2013, 13, 361-366.                                                                      | 0.4 | 10        |
| 38 | Gate All Around Metal Oxide Field Transistor: Surface Potential Calculation Method including Doping<br>and Interface Trap Charge and the Effect of Interface Trap Charge on Subthreshold Slope. Journal of<br>Semiconductor Technology and Science, 2013, 13, 530-537. | 0.4 | 9         |
| 39 | Single-String Carbon Nanotube Field Effect Transistors Fabricated by Two-Step Dielectrophoresis.<br>Japanese Journal of Applied Physics, 2012, 51, 06FE02.                                                                                                             | 1.5 | 3         |
| 40 | Analytic Modeling of a Depletion-Mode Cylindrical Surrounding-Gate Nanowire Field-Effect<br>Transistor. Journal of Nanoscience and Nanotechnology, 2012, 12, 5925-5929.                                                                                                | 0.9 | 1         |
| 41 | One electron-based smallest flexible logic cell. Applied Physics Letters, 2012, 101, .                                                                                                                                                                                 | 3.3 | 18        |
| 42 | Modified proportional fair scheduling for Cognitive Radio networks. , 2012, , .                                                                                                                                                                                        |     | 0         |
| 43 | Physical Parameter-Based SPICE Models for InGaZnO Thin-Film Transistors Applicable to Process Optimization and Robust Circuit Design. IEEE Electron Device Letters, 2012, 33, 59-61.                                                                                   | 3.9 | 15        |
| 44 | Single-String Carbon Nanotube Field Effect Transistors Fabricated by Two-Step Dielectrophoresis.<br>Japanese Journal of Applied Physics, 2012, 51, 06FE02.                                                                                                             | 1.5 | 0         |
| 45 | Subthreshold Degradation of Gate-all-Around Silicon Nanowire Field-Effect Transistors: Effect of<br>Interface Trap Charge. IEEE Electron Device Letters, 2011, 32, 1179-1181.                                                                                          | 3.9 | 20        |
| 46 | Axial p–n Nanowire Gated Diodes as a Direct Probe of Surface-Dominated Charge Dynamics in<br>Semiconductor Nanomaterials. Journal of Physical Chemistry C, 2011, 115, 23552-23557.                                                                                     | 3.1 | 9         |
| 47 | Implicit Continuous Current–Voltage Model for Surrounding-Gate Metal–Oxide–Semiconductor<br>Field-Effect Transistors Including Interface Traps. IEEE Transactions on Electron Devices, 2011, 58,<br>2520-2524.                                                         | 3.0 | 13        |
| 48 | Analytic Model of a Silicon Nanowire pH Sensor. Journal of Nanoscience and Nanotechnology, 2011, 11, 10809-10812.                                                                                                                                                      | 0.9 | 2         |
| 49 | Explicit Continuous Current–Voltage (<1>1–<1>V) Models for Fully-Depleted Surrounding-Gate<br>MOSFETs (SGMOSFETs) with a Finite Doping Body. Journal of Nanoscience and Nanotechnology, 2010,<br>10, 3316-3320.                                                        | 0.9 | 2         |
| 50 | A power-, delay- and emergency-efficient protocol ofÂubiquitous sensor network systems for silver town applications. Journal of Supercomputing, 2010, 54, 122-137.                                                                                                     | 3.6 | 3         |
| 51 | Analytical Threshold Voltage Model Including Effective Conducting Path Effect (ECPE) for<br>Surrounding-Gate MOSFETs (SGMOSFETs) With Localized Charges. IEEE Transactions on Electron<br>Devices, 2010, 57, 3176-3180.                                                | 3.0 | 29        |
| 52 | Analytic model of a silicon nanowire pH sensor. , 2010, , .                                                                                                                                                                                                            |     | 0         |
| 53 | Microwave Characterization of a Field Effect Transistor with Dielectrophoretically-Aligned Single<br>Silicon Nanowire. Japanese Journal of Applied Physics, 2010, 49, 06GG12.                                                                                          | 1.5 | 9         |
| 54 | Fabrication and Characterization of an Enhancement-Mode Planar Resonant Tunneling Transistor. IEEE<br>Nanotechnology Magazine, 2010, 9, 123-127.                                                                                                                       | 2.0 | 1         |

| #  | Article                                                                                                                                                                                          | IF  | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 55 | Simulation method for transmission-type radio-frequency single-electron transistor (RF-SET) operation by SPICE. Semiconductor Science and Technology, 2009, 24, 025020.                          | 2.0 | 0         |
| 56 | Radio frequency electrical pulse characterization of defect states in a GaAs/AlGaAs narrow channel field effect transistor. Semiconductor Science and Technology, 2009, 24, 085018.              | 2.0 | 1         |
| 57 | Single-Electron-Based Flexible Multivalued Exclusive-or Logic Gate. IEEE Transactions on Electron Devices, 2009, 56, 1048-1055.                                                                  | 3.0 | 26        |
| 58 | A SPICE-Compatible New Silicon Nanowire Field-Effect Transistors (SNWFETs) Model. IEEE<br>Nanotechnology Magazine, 2009, 8, 643-649.                                                             | 2.0 | 16        |
| 59 | Hybrid integration of GaAs/AlGaAs in-plane-gate resonant tunneling and field effect transistors.<br>Physica E: Low-Dimensional Systems and Nanostructures, 2008, 40, 2160-2162.                  | 2.7 | 3         |
| 60 | Electrical characteristics of the back-gated bottom-up silicon nanowire field effect transistor. , 2008, , .                                                                                     |     | 0         |
| 61 | A compact analytical current conduction model for a depletion-mode n-type nanowire field-effect transistor with a bottom-gate structure. Semiconductor Science and Technology, 2008, 23, 035025. | 2.0 | 5         |
| 62 | Fabrication and Characterization of Sidewall Defined Silicon-on-Insulator Single-Electron<br>Transistor. IEEE Nanotechnology Magazine, 2008, 7, 544-550.                                         | 2.0 | 5         |
| 63 | A compact model of fully-depleted surrounding-gate (SG) MOSFETs with a doped body. , 2008, , .                                                                                                   |     | 0         |
| 64 | Design of A Power-, Delay-, and Emergency-Efficient Protocol of Ubiquitous Sensor Network Systems<br>for Silver Town Applications. , 2008, , .                                                   |     | 1         |
| 65 | Continuous analytic current-voltage (I–V) model for long-channel doped surrounding-gate<br>MOSFETs (SGMOSFETs). , 2008, , .                                                                      |     | 1         |
| 66 | Electrical Characteristics of the Backgated Bottom-Up Silicon Nanowire FETs. IEEE Nanotechnology<br>Magazine, 2008, 7, 683-687.                                                                  | 2.0 | 10        |
| 67 | Power-, delay-, and emergency-efficient protocol for ubiquitous wireless sensor networks of silver town. , 2008, , .                                                                             |     | 0         |
| 68 | Green-function approach to transport through a gate-surrounded Si nanowire with impurity scattering. Physical Review B, 2008, 77, .                                                              | 3.2 | 9         |
| 69 | Radio frequency pulse response of an in-plane-gate field effect transistor. Journal of Physics:<br>Conference Series, 2008, 109, 012020.                                                         | 0.4 | 0         |
| 70 | Multi-Valued Logic Circuits Using Hybrid Circuit Consisting of Three Gates Single-Electron<br>Transistors (TG-SETs) and MOSFETs. Journal of Nanoscience and Nanotechnology, 2008, 8, 4992-4998.  | 0.9 | 0         |
| 71 | Fabrication and Characterization of a Double Quantum Dot Structure. Journal of Nanoscience and<br>Nanotechnology, 2008, 8, 5009-5013.                                                            | 0.9 | 2         |
| 72 | New Adders Using Hybrid Circuit Consisting of Three-Gate Single-Electron Transistors (TG-SETs) and MOSFETs. Journal of Nanoscience and Nanotechnology, 2007, 7, 4120-4125.                       | 0.9 | 0         |

| #  | Article                                                                                                                                                                                                                                                   | IF  | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 73 | Equivalent Circuit Model of Semiconductor Nanowire Diode by SPICE. Journal of Nanoscience and Nanotechnology, 2007, 7, 4089-4093.                                                                                                                         | 0.9 | 16        |
| 74 | Transmission-Type Radio-Frequency Single-Electron Transistor with In-Plane-Gate Single-Electron<br>Transistor. Japanese Journal of Applied Physics, 2007, 46, 2592-2595.                                                                                  | 1.5 | 2         |
| 75 | A half-adder (HA) and a full-adder (FA) combining single-electron transistors (SETs) with MOSFETs.<br>Semiconductor Science and Technology, 2007, 22, 647-652.                                                                                            | 2.0 | 3         |
| 76 | Observation of gate bias dependent interface coupling in thin silicon-on-insulator<br>metal-oxide-semiconductor field-effect transistors. Journal of Applied Physics, 2007, 102, 034509.                                                                  | 2.5 | 3         |
| 77 | Modeling of Semiconductor Nanowire Field-Effect Transistors Considering Schottky-Barrier-Height<br>Lowering. Journal of the Korean Physical Society, 2007, 51, 298.                                                                                       | 0.7 | 4         |
| 78 | Resonant tunneling through Quantum States of Enhancement Mode an In-Plane-Gate Quantum Dot<br>Transistor. AIP Conference Proceedings, 2007, , .                                                                                                           | 0.4 | 0         |
| 79 | Gate bias controlled NDR in an in-plane-gate quantum dot transistor. Physica E: Low-Dimensional<br>Systems and Nanostructures, 2006, 32, 532-535.                                                                                                         | 2.7 | 5         |
| 80 | Fabrication and characterization of GaAs/AlGaAs planar resonant tunneling transistor. , 2006, , .                                                                                                                                                         |     | 0         |
| 81 | Simulation method of transmission-type Radio-Frequency Single-Electron Transistor (RF-SET) by SPICE. , 2006, , .                                                                                                                                          |     | 1         |
| 82 | Transient modelling of single-electron transistors for efficient circuit simulation by SPICE. IET Circuits, Devices and Systems, 2005, 152, 691.                                                                                                          | 0.6 | 17        |
| 83 | Multi-valued static random access memory (SRAM) cell with single-electron and MOSFET hybrid circuit. Electronics Letters, 2005, 41, 1316.                                                                                                                 | 1.0 | 5         |
| 84 | All-analytic surface potential model for SOI MOSFETs. IET Circuits, Devices and Systems, 2005, 152, 183.                                                                                                                                                  | 0.6 | 17        |
| 85 | Fabrication and characterization of metal-semiconductor field-effect-transistor-type quantum devices. Journal of Applied Physics, 2004, 96, 704-708.                                                                                                      | 2.5 | 4         |
| 86 | Equivalent circuit approach for single electron transistor model for efficient circuit simulation by SPICE. Electronics Letters, 2002, 38, 850.                                                                                                           | 1.0 | 12        |
| 87 | Double-dot-like charge transport through a small size silicon single electron transistor. Physica E:<br>Low-Dimensional Systems and Nanostructures, 2002, 13, 946-949.                                                                                    | 2.7 | 11        |
| 88 | Comments on "A numerical analysis of the storage times of dynamic random-access memory cells incorporating ultrathin dielectrics". IEEE Transactions on Electron Devices, 2000, 47, 900-901.                                                              | 3.0 | 0         |
| 89 | Macromodeling of single-electron transistors for efficient circuit simulation. IEEE Transactions on Electron Devices, 1999, 46, 1667-1671.                                                                                                                | 3.0 | 72        |
| 90 | A Physics-Based, SPICE (Simulation Program with Integrated Circuit Emphasis)-Compatible<br>Non-Quasi-Static MOS (Metal-Oxide-Semiconductor) Transient Model Based on the Collocation<br>Method. Japanese Journal of Applied Physics, 1998, 37, L119-L121. | 1.5 | 10        |