
Xinyu Zhao

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4850938/publications.pdf Version: 2024-02-01

Χινινι Ζηλο

#	Article	IF	CITATIONS
1	High Throughput Small Molecule Screen for Reactivation of FMR1 in Fragile X Syndrome Human Neural Cells. Cells, 2022, 11, 69.	4.1	3
2	Sustained correction of hippocampal neurogenic and cognitive deficits after a brief treatment by Nutlin-3 in a mouse model of fragile X syndrome. BMC Medicine, 2022, 20, 163.	5.5	5
3	The molecular biology of FMRP: new insights into fragile X syndrome. Nature Reviews Neuroscience, 2021, 22, 209-222.	10.2	164
4	sncRiboTag-Seq: Cell-type-specific RiboTag-Seq for cells in low abundance in mouse brain tissue. STAR Protocols, 2021, 2, 100231.	1.2	5
5	FXR1 regulation of parvalbumin interneurons in the prefrontal cortex is critical for schizophrenia-like behaviors. Molecular Psychiatry, 2021, 26, 6845-6867.	7.9	20
6	Astroglial FMRP deficiency cell-autonomously up-regulates miR-128 and disrupts developmental astroglial mGluR5 signaling. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 25092-25103.	7.1	15
7	RGS6 Mediates Effects of Voluntary Running on Adult Hippocampal Neurogenesis. Cell Reports, 2020, 32, 107997.	6.4	19
8	Steps towards standardized quantification of adult neurogenesis. Nature Communications, 2020, 11, 4275.	12.8	34
9	Identification of FMR1-regulated molecular networks in human neurodevelopment. Genome Research, 2020, 30, 361-374.	5.5	47
10	Intellectual and Developmental Disabilities Research Centers: A Multidisciplinary Approach to Understand the Pathogenesis of Methyl-CpG Binding Protein 2-related Disorders. Neuroscience, 2020, 445, 190-206.	2.3	11
11	Advances in Human Stem Cells and Genome Editing to Understand and Develop Treatment for Fragile X Syndrome. Advances in Neurobiology, 2020, 25, 33-53.	1.8	0
12	One-Step Generation of Seamless Luciferase Gene Knockin Using CRISPR/Cas9 Genome Editing in Human Pluripotent Stem Cells. Methods in Molecular Biology, 2019, 1942, 61-69.	0.9	2
13	Using Human Neural Progenitor Cell Models to Conduct Large-Scale Drug Screens for Neurological and Psychiatric Diseases. Methods in Molecular Biology, 2019, 1942, 79-88.	0.9	2
14	Reduced mitochondrial fusion and Huntingtin levels contribute to impaired dendritic maturation and behavioral deficits in Fmr1-mutant mice. Nature Neuroscience, 2019, 22, 386-400.	14.8	67
15	CRISPR/Cas9 editing of APP C-terminus attenuates β-cleavage and promotes α-cleavage. Nature Communications, 2019, 10, 53.	12.8	81
16	Conditioned media from AICAR-treated skeletal muscle cells increases neuronal differentiation of adult neural progenitor cells. Neuropharmacology, 2019, 145, 123-130.	4.1	24
17	Loss of MeCP2 in immature neurons leads to impaired network integration. Human Molecular Genetics, 2019, 28, 245-257.	2.9	26
18	Hippocampal deficits in neurodevelopmental disorders. Neurobiology of Learning and Memory, 2019, 165, 106945.	1.9	46

Χίνυ Ζηλο

#	Article	IF	CITATIONS
19	Human Adult Neurogenesis: Evidence and Remaining Questions. Cell Stem Cell, 2018, 23, 25-30.	11.1	601
20	Neural stem cells: developmental mechanisms and disease modeling. Cell and Tissue Research, 2018, 371, 1-6.	2.9	61
21	Identifying molecular mediators of environmentally enhanced neurogenesis. Cell and Tissue Research, 2018, 371, 7-21.	2.9	25
22	Human Models Are Needed for Studying Human Neurodevelopmental Disorders. American Journal of Human Genetics, 2018, 103, 829-857.	6.2	103
23	MBD1 Contributes to the Genesis of Acute Pain and Neuropathic Pain by Epigenetic Silencing of <i>Oprm1</i> and <i>Kcna2</i> Genes in Primary Sensory Neurons. Journal of Neuroscience, 2018, 38, 9883-9899.	3.6	43
24	Regulatory discrimination of mRNAs by FMRP controls mouse adult neural stem cell differentiation. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, E11397-E11405.	7.1	78
25	Reducing histone acetylation rescues cognitive deficits in a mouse model of Fragile X syndrome. Nature Communications, 2018, 9, 2494.	12.8	34
26	Regulation of Adult Neurogenesis by the Fragile X Family of RNA Binding Proteins. Brain Plasticity, 2018, 3, 205-223.	3.5	10
27	Integrative Single-Cell Transcriptomics Reveals Molecular Networks Defining Neuronal Maturation During Postnatal Neurogenesis. Cerebral Cortex, 2017, 27, 2064-2077.	2.9	28
28	Methyl-CpG binding domain protein 1 regulates localization and activity of Tet1 in a CXXC3 domain-dependent manner. Nucleic Acids Research, 2017, 45, 7118-7136.	14.5	32
29	Fragile X related protein 1 (FXR1P) regulates proliferation of adult neural stem cells. Human Molecular Genetics, 2017, 26, 1340-1352.	2.9	24
30	Methyl-CpG-Binding Protein MBD1 Regulates Neuronal Lineage Commitment through Maintaining Adult Neural Stem Cell Identity. Journal of Neuroscience, 2017, 37, 523-536.	3.6	32
31	Imaging Voltage in Genetically Defined Neuronal Subpopulations with a Cre Recombinase-Targeted Hybrid Voltage Sensor. Journal of Neuroscience, 2017, 37, 9305-9319.	3.6	24
32	Establishment of Reporter Lines for Detecting Fragile X Mental Retardation (<i>FMR1</i>) Gene Reactivation in Human Neural Cells. Stem Cells, 2017, 35, 158-169.	3.2	44
33	DNA Methylation and Adult Neurogenesis. Brain Plasticity, 2017, 3, 5-26.	3.5	56
34	Methyl-CpG-Binding Protein MBD1 Regulates Neuronal Lineage Commitment through Maintaining Adult Neural Stem Cell Identity. Journal of Neuroscience, 2017, 37, 523-536.	3.6	6
35	Misregulation of Alternative Splicing in a Mouse Model of Rett Syndrome. PLoS Genetics, 2016, 12, e1006129.	3.5	57
36	Genetics and Epigenetics in Adult Neurogenesis. Cold Spring Harbor Perspectives in Biology, 2016, 8, a018911.	5.5	64

Χίνυ Ζηάο

#	Article	IF	CITATIONS
37	MDM2 inhibition rescues neurogenic and cognitive deficits in a mouse model of fragile X syndrome. Science Translational Medicine, 2016, 8, 336ra61.	12.4	50
38	Human pluripotent stem cell models of Fragile X syndrome. Molecular and Cellular Neurosciences, 2016, 73, 43-51.	2.2	29
39	Inhibition of miR-15a Promotes BDNF Expression and Rescues Dendritic Maturation Deficits in MeCP2-Deficient Neurons. Stem Cells, 2015, 33, 1618-1629.	3.2	48
40	Fragile X Proteins FMRP and FXR2P Control Synaptic GluA1 Expression and Neuronal Maturation via Distinct Mechanisms. Cell Reports, 2015, 11, 1651-1666.	6.4	72
41	Positive feedback between RNA-binding protein HuD and transcription factor SATB1 promotes neurogenesis. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, E4995-5004.	7.1	55
42	Cell cycle-linked MeCP2 phosphorylation modulates adult neurogenesis involving the Notch signalling pathway. Nature Communications, 2014, 5, 5601.	12.8	57
43	Concise Review: Fragile X Proteins in Stem Cell Maintenance and Differentiation. Stem Cells, 2014, 32, 1724-1733.	3.2	46
44	An Epigenetic Feedback Regulatory Loop Involving MicroRNA-195 and MBD1 Governs Neural Stem Cell Differentiation. PLoS ONE, 2013, 8, e51436.	2.5	54
45	Inhibition of GSK3Â improves hippocampus-dependent learning and rescues neurogenesis in a mouse model of fragile X syndrome. Human Molecular Genetics, 2012, 21, 681-691.	2.9	143
46	Isolation of multipotent neural stem or progenitor cells from both the dentate gyrus and subventricular zone of a single adult mouse. Nature Protocols, 2012, 7, 2005-2012.	12.0	149
47	Crosstalk among Epigenetic Pathways Regulates Neurogenesis. Frontiers in Neuroscience, 2012, 6, 59.	2.8	105
48	Ablation of Fmrp in adult neural stem cells disrupts hippocampus-dependent learning. Nature Medicine, 2011, 17, 559-565.	30.7	205
49	RNA-Binding Protein FXR2 Regulates Adult Hippocampal Neurogenesis by Reducing Noggin Expression. Neuron, 2011, 70, 924-938.	8.1	78
50	Alcohol Exposure Decreases CREB Binding Protein Expression and Histone Acetylation in the Developing Cerebellum. PLoS ONE, 2011, 6, e19351.	2.5	87
51	Epigenetic regulation of neuronal dendrite and dendritic spine development. Frontiers in Biology, 2010, 5, 304-323.	0.7	24
52	MicroRNA miR-137 Regulates Neuronal Maturation by Targeting Ubiquitin Ligase Mind Bomb-1. Stem Cells, 2010, 28, 1060-1070.	3.2	349
53	Cross talk between microRNA and epigenetic regulation in adult neurogenesis. Journal of Cell Biology, 2010, 189, 127-141.	5.2	445
54	Fragile X Mental Retardation Protein Regulates Proliferation and Differentiation of Adult Neural Stem/Progenitor Cells. PLoS Genetics, 2010, 6, e1000898.	3.5	211

Χινύ Ζηλο

#	Article	IF	CITATIONS
55	Epigenetic Regulation of miR-184 by MBD1 Governs Neural Stem Cell Proliferation and Differentiation. Cell Stem Cell, 2010, 6, 433-444.	11.1	287
56	Endogenous Matrix Metalloproteinase (MMP)-3 and MMP-9 Promote the Differentiation and Migration of Adult Neural Progenitor Cells in Response to Chemokines. Stem Cells, 2008, 26, 3139-3149.	3.2	179
57	Epigenetic Regulation of Mammalian Stem Cells. Stem Cells and Development, 2008, 17, 1043-1052.	2.1	73
58	Epigenetic Regulation of the Stem Cell Mitogen Fgf-2 by Mbd1 in Adult Neural Stem/Progenitor Cells. Journal of Biological Chemistry, 2008, 283, 27644-27652.	3.4	95
59	The loss of methyl-CpG binding protein 1 leads to autism-like behavioral deficits. Human Molecular Genetics, 2008, 17, 2047-2057.	2.9	89
60	Mecp2 deficiency leads to delayed maturation and altered gene expression in hippocampal neurons. Neurobiology of Disease, 2007, 27, 77-89.	4.4	196
61	Identification of Astrocyte-expressed Factors That Modulate Neural Stem/Progenitor Cell Differentiation. Stem Cells and Development, 2006, 15, 407-421.	2.1	273
62	Mice lacking methyl-CpG binding protein 1 have deficits in adult neurogenesis and hippocampal function. Proceedings of the National Academy of Sciences of the United States of America, 2003, 100, 6777-6782.	7.1	346
63	Transcriptional profiling reveals strict boundaries between hippocampal subregions. Journal of Comparative Neurology, 2001, 441, 187-196.	1.6	178