
## Peter James Murphy

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4850634/publications.pdf Version: 2024-02-01



| #  | Article                                                                                                                                                                                                                                                          | IF   | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 1  | Semi-metallic polymers. Nature Materials, 2014, 13, 190-194.                                                                                                                                                                                                     | 27.5 | 722       |
| 2  | Polymeric Material with Metal-Like Conductivity for Next Generation Organic Electronic Devices.<br>Chemistry of Materials, 2012, 24, 3998-4003.                                                                                                                  | 6.7  | 224       |
| 3  | Condensation and freezing of droplets on superhydrophobic surfaces. Advances in Colloid and Interface Science, 2014, 210, 47-57.                                                                                                                                 | 14.7 | 223       |
| 4  | Pure silicon thin-film anodes for lithium-ion batteries: A review. Journal of Power Sources, 2019, 414,<br>48-67.                                                                                                                                                | 7.8  | 147       |
| 5  | Surface treatments for controlling corrosion rate of biodegradable Mg and Mg-based alloy implants.<br>Science and Technology of Advanced Materials, 2015, 16, 053501.                                                                                            | 6.1  | 129       |
| 6  | Recent advances in the synthesis of conducting polymers from the vapour phase. Progress in<br>Materials Science, 2017, 86, 127-146.                                                                                                                              | 32.8 | 115       |
| 7  | The role of water in the synthesis and performance of vapour phase polymerised PEDOT electrochromic devices. Journal of Materials Chemistry, 2009, 19, 7871.                                                                                                     | 6.7  | 95        |
| 8  | Vacuum vapour phase polymerization of high conductivity PEDOT: Role of PEG-PPG-PEG, the origin of water, and choice of oxidant. Polymer, 2012, 53, 2146-2151.                                                                                                    | 3.8  | 88        |
| 9  | Structure-directed growth of high conductivity PEDOT from liquid-like oxidant layers during vacuum vapor phase polymerization. Journal of Materials Chemistry, 2012, 22, 14889.                                                                                  | 6.7  | 84        |
| 10 | Improved PEDOT Conductivity via Suppression of Crystallite Formation in Fe(III) Tosylate During Vapor<br>Phase Polymerization. Macromolecular Rapid Communications, 2008, 29, 1503-1508.                                                                         | 3.9  | 82        |
| 11 | High conductivity PEDOT resulting from glycol/oxidant complex and glycol/polymer intercalation during vacuum vapour phase polymerisation. Polymer, 2011, 52, 1725-1730.                                                                                          | 3.8  | 73        |
| 12 | High Conductivity PEDOT Using Humidity Facilitated Vacuum Vapour Phase Polymerisation.<br>Macromolecular Rapid Communications, 2008, 29, 1403-1409.                                                                                                              | 3.9  | 72        |
| 13 | Inkjet printing and vapor phase polymerization: patterned conductive PEDOT for electronic applications. Journal of Materials Chemistry C, 2013, 1, 3353.                                                                                                         | 5.5  | 56        |
| 14 | Influence of PEGâ€ <i>ran</i> â€PPG Surfactant on Vapour Phase Polymerised PEDOT Thin Films.<br>Macromolecular Rapid Communications, 2009, 30, 1846-1851.                                                                                                        | 3.9  | 51        |
| 15 | Enhancing the corrosion resistance of biodegradable Mg-based alloy by machining-induced surface integrity: influence of machining parameters on surface roughness and hardness. International Journal of Advanced Manufacturing Technology, 2017, 90, 2095-2108. | 3.0  | 51        |
| 16 | Vacuum vapour phase polymerised poly(3,4-ethyelendioxythiophene) thin films for use in large-scale electrochromic devices. Thin Solid Films, 2011, 519, 2544-2549.                                                                                               | 1.8  | 47        |
| 17 | Ultrathin Polymer Films for Transparent Electrode Applications Prepared by Controlled Nucleation.<br>ACS Applied Materials & Interfaces, 2013, 5, 11654-11660.                                                                                                   | 8.0  | 43        |
| 18 | Flexible Polymer-on-Polymer Architecture for Piezo/Pyroelectric Energy Harvesting. ACS Applied<br>Materials & Interfaces, 2015, 7, 8465-8471.                                                                                                                    | 8.0  | 41        |

Peter James Murphy

| #  | Article                                                                                                                                                                                                                       | IF  | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 19 | Doped and reactive silicon thin film anodes for lithium ion batteries: A review. Journal of Power<br>Sources, 2021, 506, 230194.                                                                                              | 7.8 | 40        |
| 20 | Factors affecting the adhesion of microwave plasma deposited siloxane films on polycarbonate. Thin Solid Films, 2006, 500, 34-40.                                                                                             | 1.8 | 34        |
| 21 | Colouration efficiency measurements in electrochromic polymers: The importance of charge density.<br>Electrochemistry Communications, 2007, 9, 2032-2036.                                                                     | 4.7 | 34        |
| 22 | In-situ QCM-D analysis reveals four distinct stages during vapour phase polymerisation of PEDOT thin films. Polymer, 2010, 51, 1737-1743.                                                                                     | 3.8 | 34        |
| 23 | Metal-free oxygen reduction electrodes based on thin PEDOT films with high electrocatalytic activity.<br>RSC Advances, 2014, 4, 9819.                                                                                         | 3.6 | 34        |
| 24 | Gel electrolytes with ionic liquid plasticiser for electrochromic devices. Electrochimica Acta, 2011,<br>56, 4408-4413.                                                                                                       | 5.2 | 33        |
| 25 | Evidence for â€~bottom up' growth during vapor phase polymerization of conducting polymers. Polymer,<br>2014, 55, 3458-3460.                                                                                                  | 3.8 | 32        |
| 26 | The mechanism of conductivity enhancement in<br>poly(3,4-ethylenedioxythiophene)–poly(styrenesulfonic) acid using linear-diol additives: Its effect on<br>electrochromic performance. Thin Solid Films, 2008, 516, 7828-7835. | 1.8 | 29        |
| 27 | Measurement Protocols for Reporting PEDOT Thin Film Conductivity and Optical Transmission: A Critical Survey. Macromolecular Chemistry and Physics, 2011, 212, 2173-2180.                                                     | 2.2 | 26        |
| 28 | Vapor Phase Synthesis of Conducting Polymer Nanocomposites Incorporating 2D Nanoparticles.<br>Chemistry of Materials, 2014, 26, 4207-4213.                                                                                    | 6.7 | 26        |
| 29 | Effect of oxidant on the performance of conductive polymer films prepared by vacuum vapor phase polymerization for smart window applications. Smart Materials and Structures, 2015, 24, 035016.                               | 3.5 | 24        |
| 30 | Hydrophilic Organic Electrodes on Flexible Hydrogels. ACS Applied Materials & Interfaces, 2016, 8,<br>974-982.                                                                                                                | 8.0 | 23        |
| 31 | A Solid-State Nuclear Magnetic Resonance Study of Post-Plasma Reactions in Organosilicone<br>Microwave Plasma-Enhanced Chemical Vapor Deposition (PECVD) Coatings. ACS Applied Materials &<br>Interfaces, 2014, 6, 8353-8362. | 8.0 | 21        |
| 32 | Finite Element Analysis of Surface Integrity in Deep Ball-Burnishing of a Biodegradable AZ31B Mg Alloy.<br>Metals, 2018, 8, 136.                                                                                              | 2.3 | 21        |
| 33 | Diffuse color patterning using blended electrochromic polymers for proofâ€ofâ€concept adaptive<br>camouflage plaques. Journal of Applied Polymer Science, 2015, 132, .                                                        | 2.6 | 19        |
| 34 | Faradaic charge corrected colouration efficiency measurements for electrochromic devices.<br>Electrochimica Acta, 2008, 53, 2250-2257.                                                                                        | 5.2 | 18        |
| 35 | Enhancing the morphology and electrochromic stability of polypyrrole via PEG–PPG–PEG templating<br>in vapour phase polymerisation. European Polymer Journal, 2014, 51, 28-36.                                                 | 5.4 | 18        |
| 36 | Organic energy devices from ionic liquids and conducting polymers. Journal of Materials Chemistry C, 2016, 4, 1550-1556.                                                                                                      | 5.5 | 15        |

Peter James Murphy

| #  | Article                                                                                                                                                                                                                                         | IF                | CITATIONS          |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|--------------------|
| 37 | Abrasion resistance of thin film coatings as measured by diffuse optical scattering. Surface and Coatings Technology, 2011, 206, 312-317.                                                                                                       | 4.8               | 14                 |
| 38 | Corrosion resistance of robust optical and electrical thin film coatings on polymeric substrates.<br>Corrosion Science, 2013, 69, 406-411.                                                                                                      | 6.6               | 14                 |
| 39 | One‣tep Fabrication of Nanocomposite Thin Films of PTFE in SiO <i><sub>x</sub></i> for Repelling<br>Water. Advanced Engineering Materials, 2015, 17, 474-482.                                                                                   | 3.5               | 13                 |
| 40 | Ultrathin films of co-sputtered CrZrx alloys on polymeric substrates. Surface and Coatings<br>Technology, 2012, 206, 3733-3738.                                                                                                                 | 4.8               | 12                 |
| 41 | Direct Imaging of Mechanical and Chemical Gradients Across the Thickness of Graded Organosilicone<br>Microwave PECVD Coatings. ACS Applied Materials & Interfaces, 2014, 6, 1279-1287.                                                          | 8.0               | 12                 |
| 42 | First synthesis of 3- O -methyl-scyllo-inosamine, a natural product which favors the<br>Rhizobium–Leguminosae symbiosis. Tetrahedron Letters, 2004, 45, 1461-1463.                                                                              | 1.4               | 11                 |
| 43 | Enhanced abrasion resistance of ultrathin reflective coatings on polymeric substrates: An<br>improvement upon glass substrates. Wear, 2013, 297, 986-991.                                                                                       | 3.1               | 11                 |
| 44 | Compressively Stressed Silicon Nanoclusters as an Antifracture Mechanism for High-Performance<br>Lithium-Ion Battery Anodes. ACS Applied Materials & Interfaces, 2020, 12, 39195-39204.                                                         | 8.0               | 11                 |
| 45 | Fabrication of robust solar mirrors on polymeric substrates by physical vapor deposition technique.<br>Solar Energy Materials and Solar Cells, 2020, 209, 110476.                                                                               | 6.2               | 11                 |
| 46 | Atomic structure studies of chrome alloy coatings and their abrasion resistance. Surface and Coatings Technology, 2012, 206, 3645-3649.                                                                                                         | 4.8               | 10                 |
| 47 | Unusual Nature of Fingerprints and the Implications for Easy-to-Clean Coatings. Langmuir, 2016, 32, 619-625.                                                                                                                                    | 3.5               | 10                 |
| 48 | Packing density/surface morphology relationship in thin sputtered chromium films. Surface and Coatings Technology, 2016, 291, 286-291.                                                                                                          | 4.8               | 10                 |
| 49 | Etching and Deposition Mechanism of an Alcohol Plasma on Polycarbonate and Poly(Methyl) Tj ETQq1 1 0.7843<br>a:SiO <sub><i>x</i></sub> C <sub><i>y</i></sub> H <sub><i>z</i></sub> Coating. Plasma Processes and<br>Polymers. 2012. 9. 855-865. | 14 rgBT /O<br>3.0 | verlock 10 Tf<br>9 |
| 50 | Nanoporous Glass Films on Liquids. ACS Applied Materials & amp; Interfaces, 2014, 6, 507-512.                                                                                                                                                   | 8.0               | 9                  |
| 51 | The effect of block copolymer additives for a highly active polymeric metal-free oxygen reduction electrode. RSC Advances, 2016, 6, 28809-28814.                                                                                                | 3.6               | 9                  |
| 52 | Influence of post-deposition moisture uptake in polycarbonate on thin film's residual stress short<br>term evolution. Surface and Coatings Technology, 2016, 294, 210-214.                                                                      | 4.8               | 9                  |
| 53 | Metallic Adhesive Layers for Agâ€Based First Surface Mirrors. Advanced Engineering Materials, 2018, 20,<br>1800106.                                                                                                                             | 3.5               | 9                  |
| 54 | Influence of Postsynthesis Heat Treatment on Vapor-Phase-Polymerized Conductive Polymers. ACS<br>Omega, 2018, 3, 12679-12687.                                                                                                                   | 3.5               | 9                  |

| #  | Article                                                                                                                                                                                                                          | IF  | CITATIONS |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 55 | Hydroxyl Radical Etching Improves Adhesion of Plasmaâ€Deposited<br>aâ€&iO <sub><i>x</i></sub> C <sub><i>y</i></sub> H <sub><i>z</i></sub> Films on<br>Poly(Methylmethacrylate). Plasma Processes and Polymers, 2012, 9, 398-405. | 3.0 | 8         |
| 56 | Manipulation of cluster formation through gas-wall boundary conditions in large area cluster sources. Surface and Coatings Technology, 2017, 314, 125-130.                                                                       | 4.8 | 8         |
| 57 | Variations in graded organosilicone microwave PECVD coatings modify stress and improve the durability on plastic substrates. Surface and Coatings Technology, 2014, 259, 616-624.                                                | 4.8 | 7         |
| 58 | Influence of Tetramethyldisiloxaneâ€Oxygen Mixtures on the Physical Properties of Microwave PECVD<br>Coatings and Subsequent Postâ€Plasma Reactions. Plasma Processes and Polymers, 2015, 12, 555-563.                           | 3.0 | 7         |
| 59 | Postâ€polymerization surface segregation in thin PECVD siloxane films leading to a selfâ€regenerative effect. Plasma Processes and Polymers, 2017, 14, 1600233.                                                                  | 3.0 | 7         |
| 60 | Market evaluation, performance modelling and materials solution addressing short wavelength discomfort glare in rear view automotive mirrors. Translational Materials Research, 2015, 2, 035002.                                 | 1.2 | 6         |
| 61 | <scp>G</scp> rowth of Sputtered Nanocomposite Alloys on Polymeric Substrates: The Role of the Substrate's Mechanical Hardness. Advanced Engineering Materials, 2013, 15, 1076-1081.                                              | 3.5 | 5         |
| 62 | Mesoporous Siloxane Films Through Thermal Oxidation of Siloxane–Carbon Nanocomposites.<br>Advanced Engineering Materials, 2015, 17, 1547-1555.                                                                                   | 3.5 | 5         |
| 63 | Decoupling the effects of confinement and passivation on semiconductor quantum dots. Physical Chemistry Chemical Physics, 2016, 18, 19765-19772.                                                                                 | 2.8 | 5         |
| 64 | Clustered Outbreak of Adverse Reactions to a Salsa Containing High Levels of Sulfites. Journal of Food Protection, 1995, 58, 95-97.                                                                                              | 1.7 | 4         |
| 65 | Optical coatings for automotive applications: a case study in translating fundamental materials science into commercial reality. Translational Materials Research, 2014, 1, 025001.                                              | 1.2 | 4         |
| 66 | Orbital hybridization, crystal structure and anomalous resistivity of ultrathin CrZr alloy films on polymeric substrates. Scripta Materialia, 2012, 67, 356-359.                                                                 | 5.2 | 3         |
| 67 | Cleaning Dirty Surfaces: A Three-Body Problem. ACS Applied Materials & Interfaces, 2016, 8, 18534-18539.                                                                                                                         | 8.0 | 3         |
| 68 | Chemically Heterogeneous Nanowrinkling of Polymer Surfaces Induced by Low-Energy Cluster<br>Implantation. Journal of Physical Chemistry C, 2019, 123, 13330-13336.                                                               | 3.1 | 3         |
| 69 | Anderson-like localization in ultrathin nanocomposite alloy films on polymeric substrates. Scripta<br>Materialia, 2012, 67, 866-869.                                                                                             | 5.2 | 2         |
| 70 | Degradation and Gelation during Plasma Synthesis of Nanoparticles in Ionic Liquids. Journal of<br>Physical Chemistry C, 2017, 121, 6349-6356.                                                                                    | 3.1 | 2         |
| 71 | Plasma gas aggregation cluster source: Influence of gas inlet configuration and total surface area on the heterogeneous aggregation of silicon clusters. Surface and Coatings Technology, 2019, 364, 1-6.                        | 4.8 | 2         |
| 72 | Large Area Nanostructured Arrays: Optical Properties of Metallic Nanotubes. ACS Applied Materials<br>& Interfaces, 2013, 5, 3937-3942.                                                                                           | 8.0 | 1         |

| #  | Article                                                                                          | IF  | CITATIONS |
|----|--------------------------------------------------------------------------------------------------|-----|-----------|
| 73 | Electroactive Polymers Prepared By Vapour Phase Polymerisation. ECS Meeting Abstracts, 2015, , . | 0.0 | ο         |