
Andrey L Stepanov

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/48505/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Organometal Halide Perovskite Solar Cell Materials Rationalized: Ultrafast Charge Generation, High and Microsecond-Long Balanced Mobilities, and Slow Recombination. Journal of the American Chemical Society, 2014, 136, 5189-5192.	13.7	1,106
2	Leakage radiation microscopy of surface plasmon polaritons. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2008, 149, 220-229.	3.5	231
3	Dielectric optical elements for surface plasmons. Optics Letters, 2005, 30, 893.	3.3	161
4	Quantitative analysis of surface plasmon interaction with silver nanoparticles. Optics Letters, 2005, 30, 1524.	3.3	110
5	How to erase surface plasmon fringes. Applied Physics Letters, 2006, 89, 091117.	3.3	98
6	Formation of silver nanoparticles in soda–lime silicate glass by ion implantation near room temperature. Journal of Non-Crystalline Solids, 1999, 260, 65-74.	3.1	85
7	Saturated absorption and nonlinear refraction of silicate glasses doped with silver nanoparticles at 532 nm. Optical and Quantum Electronics, 2004, 36, 949-960.	3.3	81
8	Reduction of the size of the implanted silver nanoparticles in float glass during excimer laser annealing. Applied Surface Science, 1998, 136, 298-305.	6.1	58
9	Application of RZ-scan technique for investigation of nonlinear refraction of sapphire doped with Ag, Cu, and Au nanoparticles. Optics Communications, 2005, 253, 205-213.	2.1	58
10	Large enhancement of the third-order optical susceptibility in Cu-silica composites produced by low-energy high-current ion implantation. Journal of Applied Physics, 2001, 90, 1064-1066.	2.5	57
11	Saturated absorption and reverse saturated absorption of Cu:SiO2 atλ = 532 nm. Physica Status Solidi (B): Basic Research, 2004, 241, R1-R4.	1.5	57
12	Optical properties and luminescence of metallic nanoclusters in ZnO:Cu. Physica B: Condensed Matter, 2005, 363, 88-95.	2.7	57
13	Depth distribution of Cu, Ag and Au ions implanted at low energy into insulators. Nuclear Instruments & Methods in Physics Research B, 2000, 166-167, 26-30.	1.4	55
14	Characterization of nonlinear optical parameters of copper- and silver-doped silica glasses at λ = 1064 nm. Physica Status Solidi (B): Basic Research, 2004, 241, 935-944.	1.5	55
15	Optical nonlinearities of Au nanoparticles embedded in a zinc oxide matrix. Optics Communications, 2007, 273, 538-543.	2.1	55
16	Nonlinear optical susceptibilities of copper- and silver-doped silicate glasses in the ultraviolet range. Physica Status Solidi (B): Basic Research, 2003, 238, R5-R7.	1.5	48
17	Formation of metal-polymer composites by ion implantation. The Philosophical Magazine: Physics of Condensed Matter B, Statistical Mechanics, Electronic, Optical and Magnetic Properties, 2000, 80, 23-28.	0.6	47
18	Third-order nonlinear-optical parameters of gold nanoparticles in different matrices. Journal of Luminescence, 2007, 127, 181-185.	3.1	47

#	Article	IF	CITATIONS
19	Optical properties of polymethylmethacrilate with implanted silver nanoparticles. Nuclear Instruments & Methods in Physics Research B, 2002, 191, 473-477.	1.4	45
20	Modification of size distribution of ion implanted silver nanoparticles in sodium silicate glass using laser and thermal annealing. Nuclear Instruments & Methods in Physics Research B, 1999, 149, 89-98.	1.4	44
21	Nonlinear optical absorption of ZnO doped with copper nanoparticles in the picosecond and nanosecond pulse laser field. Applied Optics, 2005, 44, 2839.	2.1	42
22	Splitting of a surface plasmon polariton beam by chains of nanoparticles. Applied Physics B: Lasers and Optics, 2006, 84, 29-34.	2.2	42
23	Rapid prototyping of optical components for surface plasmon polaritons. Optics Express, 2007, 15, 4205.	3.4	41
24	Optical properties of Cu implanted ZnO. Nuclear Instruments & Methods in Physics Research B, 2006, 249, 474-477.	1.4	40
25	Rapid laser prototyping of plasmonic components. Applied Physics A: Materials Science and Processing, 2007, 89, 321-325.	2.3	40
26	Synthesis of periodic plasmonic microstructures with copper nanoparticles in silica glass by low-energy ion implantation. Applied Physics A: Materials Science and Processing, 2013, 111, 261-264.	2.3	40
27	Synthesis of Silver Nanoparticles by the Ion Implantation Method and Investigation of their Optical Properties. Journal of Applied Spectroscopy, 2005, 72, 229-234.	0.7	38
28	Efficiency enhancements in Ag nanoparticles-SiO2-TiO2 sandwiched structure via plasmonic effect-enhanced light capturing. Nanoscale Research Letters, 2013, 8, 73.	5.7	38
29	Reflectance of the dielectric layers containing metal nanoparticles formed by ion implantation. Journal of Non-Crystalline Solids, 1999, 244, 275-279.	3.1	37
30	Nanostructuring of silicate glass under low-energy Ag-ion implantation. Surface Science, 2004, 566-568, 1250-1254.	1.9	37
31	Nonlinear optical properties of gold nanoparticles dispersed in different optically transparent matrices. Physics of the Solid State, 2009, 51, 55-60.	0.6	36
32	Non-linear optical properties of metal nanoparticles implanted in silicate glass. Nuclear Instruments & Methods in Physics Research B, 2003, 206, 624-628.	1.4	35
33	Surface Plasmon Polariton Mach–Zehnder Interferometer and Oscillation Fringes. Plasmonics, 2006, 1, 141-145.	3.4	35
34	Dependence of optical properties of implanted silver nanoparticles in float glass on substrate temperature. Nuclear Instruments & Methods in Physics Research B, 1999, 148, 1054-1058.	1.4	32
35	Fabrication of Ag/ZnO nanostructures for SERS applications. Applied Surface Science, 2020, 508, 145227.	6.1	31
36	Nanosecond pulse laser and furnace annealing of silver nanoparticles formed by implantation in silicate glass. Surface and Coatings Technology, 2004, 185, 30-37.	4.8	30

#	Article	IF	CITATIONS
37	Novel efficient design of Y-splitter for surface plasmon polariton applications. Optics Express, 2008, 16, 14369.	3.4	29
38	Excimer laser annealing of glasses containing implanted metal nanoparticles. Nuclear Instruments & Methods in Physics Research B, 2000, 166-167, 882-886.	1.4	27
39	Laser annealing of sapphire with implanted copper nanoparticles. Nuclear Instruments & Methods in Physics Research B, 2001, 178, 120-125.	1.4	26
40	Radiation-induced change of polyimide properties under high-fluence and high ion current density implantation. Applied Physics A: Materials Science and Processing, 2004, 78, 1067-1072.	2.3	26
41	Nonlinear optical properties of copper nanoparticles synthesized in indium tin oxide matrix by ion implantation. Journal of the Optical Society of America B: Optical Physics, 2006, 23, 1348.	2.1	25
42	Analysis of the angular acceptance of surface plasmon Bragg mirrors. Optics Letters, 2007, 32, 2704.	3.3	25
43	Ion synthesis and laser annealing of Cu nanoparticles in Al 2 O 3. Applied Physics A: Materials Science and Processing, 2002, 74, 441-446.	2.3	24
44	The ion implantation-induced properties of one-dimensional nanomaterials. Nanoscale Research Letters, 2013, 8, 175.	5.7	24
45	Nonlinear optical properties of gold nanoparticles synthesized by ion implantation in sapphire matrix. Technical Physics Letters, 2005, 31, 702-705.	0.7	21
46	Surface plasmon interference fringes in back-reflection. Europhysics Letters, 2006, 74, 693-698.	2.0	20
47	Structural Defects and Positronium Formation in 40 keV B ⁺ -Implanted Polymethylmethacrylate. Journal of Physical Chemistry B, 2014, 118, 4194-4200.	2.6	20
48	Synthesis and optical properties of silver nanoparticles in ORMOCER. Applied Physics A: Materials Science and Processing, 2012, 108, 375-378.	2.3	19
49	Novel nanoparticle matter: ZrN-nanoparticles. Applied Physics B: Lasers and Optics, 2003, 77, 681-686.	2.2	18
50	Synthesis of metallic dispersion and continuous films in the viscous polymer by implantation of cobalt ions. Surface and Coatings Technology, 1998, 106, 214-219.	4.8	17
51	Optical properties of polymer layers with silver particles. Journal of Non-Crystalline Solids, 1998, 223, 250-253.	3.1	17
52	Nonlinear properties of composites based on dielectric layers containing copper and silver nanoparticles. Optics and Spectroscopy (English Translation of Optika I Spektroskopiya), 2003, 95, 967-975.	0.6	17
53	Optical and AFM study of ion-synthesised silver nanoparticles in thin surface layers of SiO2 glass. Journal of Non-Crystalline Solids, 2010, 356, 1258-1261.	3.1	17
54	Optical changes induced by high fluence implantation of Au ions on sapphire. Nuclear Instruments & Methods in Physics Research B, 2004, 218, 139-144.	1.4	15

#	Article	IF	CITATIONS
55	Optical properties of chalcogenide glasses with ion-synthesized copper nanoparticles. Technical Physics Letters, 2013, 39, 1-4.	0.7	15
56	Copper nanoparticles synthesized in polymers by ion implantation: Surface morphology and optical properties of the nanocomposites. Journal of Materials Research, 2015, 30, 86-92.	2.6	15
57	Kinetics of silver nanoparticle formation in a viscous-flow polymer. Surface Science, 1998, 395, L242-L245.	1.9	14
58	Copper ion implantation and laser annealing of silica. Nuclear Instruments & Methods in Physics Research B, 2002, 191, 468-472.	1.4	14
59	Nonlinear optical response of silver and copper nanoparticles in the near-ultraviolet spectral range. Physics of the Solid State, 2004, 46, 351-356.	0.6	14
60	Influence of metal doping on optical properties of Si nanoparticles. Optics Communications, 2014, 316, 56-60.	2.1	14
61	Laccaseâ€containing ureasil–polymer composite as the sensing layer of an amperometric biosensor. Journal of Applied Polymer Science, 2017, 134, 45278.	2.6	14
62	Porous germanium formed by low energy high dose Ag + -ion implantation. Vacuum, 2018, 152, 200-204.	3.5	14
63	Interaction of high-power laser pulses with glasses containing implanted metallic nanoparticles. Physics of the Solid State, 2001, 43, 2192-2198.	0.6	13
64	Formation of Metallic Nanoparticles in Silicate Glass through Ion Implantation. Glass Physics and Chemistry, 2002, 28, 90-95.	0.7	13
65	Synthesis and magnetic properties of nickel nanoparticles in magnesium fluoride matrix. Technical Physics Letters, 2004, 30, 151-153.	0.7	13
66	Application of ion implantation for synthesis of copper nanoparticles in a zinc oxide matrix for obtaining new nonlinear optical materials. Technical Physics Letters, 2004, 30, 846-849.	0.7	13
67	Charge separation and carrier dynamics in donor-acceptor heterojunction photovoltaic systems. Structural Dynamics, 2017, 4, 061503.	2.3	13
68	Effect of the ion beam current density on the formation of implanted metal nanoparticles in a dielectric matrix. Technical Physics Letters, 2003, 29, 977-979.	0.7	12
69	FMR and TEM Studies of Co and Ni Nanoparticles Implanted in the SiO2 Matrix. Applied Magnetic Resonance, 2011, 40, 363-375.	1.2	12
70	Modification of plasmon resonance properties of noble metal nanoparticles inside the glass matrices. Applied Surface Science, 2019, 475, 974-981.	6.1	12
71	Study of silicon surface implanted by silver ions. Vacuum, 2019, 159, 353-357.	3.5	12
72	Ion synthesis of Fe and Ag granular films in viscous and solid state polymers. Vacuum, 1998, 51, 289-294.	3.5	11

5

#	Article	IF	CITATIONS
73	Optical reflection from dielectric layers containing metal particles formed by ion implantation. Optics and Spectroscopy (English Translation of Optika I Spektroskopiya), 2000, 89, 408-412.	0.6	11
74	Interaction of high-power excimer-laser pulses with soda-lime silicate glass containing ion-implanted metal nanoparticles. Vacuum, 2001, 64, 169-177.	3.5	11
75	Investigation of the nonlinear optical characteristics of composite materials based on sapphire with silver, copper, and gold nanoparticles by the reflection Z-scan method. Optics and Spectroscopy (English Translation of Optika I Spektroskopiya), 2006, 101, 615-622.	0.6	11
76	Optical properties of metal nanoparticles. Proceedings of SPIE, 2010, , .	0.8	11
77	Carbonization in boron-ion-implanted polymethylmethacrylate as revealed from Raman spectroscopy and electrical measurements. Spectroscopy Letters, 2016, 49, 5-10.	1.0	11
78	Optical reflectance of insulators containing implanted metal nanoparticles. Nuclear Instruments & Methods in Physics Research B, 2000, 161-163, 913-916.	1.4	10
79	Magnetic and magneto-optical properties of ion-synthesized cobalt nanoparticles in silicon oxide. Physics of the Solid State, 2008, 50, 2088-2094.	0.6	10
80	Nonlinear Optical Properties of Metal Nanoparticles in Silicate Glass. , 2016, , 165-179.		10
81	Formation of a periodic diffractive structure based on poly(methyl methacrylate) with ion-implanted silver nanoparticles. Technical Physics Letters, 2016, 42, 182-185.	0.7	10
82	Characterization of silicon surfaces implanted with silver ions at low energy using spectroscopic ellipsometry. Vacuum, 2018, 148, 254-257.	3.5	10
83	Depth profiles of metal ions implanted in dielectrics at low energies. Physics of the Solid State, 2001, 43, 766-771.	0.6	9
84	Optical transmission of dielectric layers with metallic nanoparticles inhomogeneously distributed over the sample thickness. Optics and Spectroscopy (English Translation of Optika I Spektroskopiya), 2001, 91, 815-819.	0.6	9
85	Novel laser universal cluster ablation source—LUCAS. Vacuum, 2002, 67, 223-227.	3.5	9
86	New organicâ€inorganic hybrid ureasilâ€based polymer and glassâ€polymer composites with ionâ€implanted silver nanoparticles. Physica Status Solidi C: Current Topics in Solid State Physics, 2012, 9, 2444-2447.	0.8	9
87	New approach to the synthesis of porous silicon with silver nanoparticles using ion implantation technique. Nanotechnologies in Russia, 2014, 9, 163-167.	0.7	9
88	Photoluminescence of Composite Films of Poly(N-Vinylcarbazole) with CdSe/CdS Core/Shell Quantum Dots Located Near the Layer of Silver Nanoparticles on a Dielectric Material. Journal of Applied Spectroscopy, 2015, 82, 773-778.	0.7	9
89	Temperature sensor based on a polymer diffraction grating with silver nanoparticles. Quantum Electronics, 2018, 48, 82-86.	1.0	9
	Paman Scattering of Light by Malagulas of Mathyl Orange Due on the Surface of Silicon Containing		

Raman Scattering of Light by Molecules of Methyl Orange Dye on the Surface of Silicon Containing 90 Ion-Synthesized Silver Nanoparticles. Optics and Spectroscopy (English Translation of Optika I) Tj ETQq0 0 0 rgBT /Oxerlock 10 Tf 50 57

#	Article	IF	CITATIONS
91	Formation of porous germanium layers with various surface morphology in dependence on mass of implanted ions. Composites Communications, 2020, 19, 6-10.	6.3	9
92	Influence of Xe+-ion irradiation on the microstructure of diamond-like carbon films. Vacuum, 2001, 62, 15-19.	3.5	8
93	Synthesis of yttrium clusters. Vacuum, 2001, 64, 9-14.	3.5	8
94	Implantation and laser annealing of Cu nanoparticles in silica. Surface and Coatings Technology, 2002, 158-159, 526-529.	4.8	8
95	Effect of copper ion implantation on the optical properties and low-temperature conductivity of carbon films. Semiconductors, 2006, 40, 414-419.	0.5	8
96	Structural modification of chalcogenide glasses by gamma-irradiation studied with DBAL technique. Physica Status Solidi C: Current Topics in Solid State Physics, 2012, 9, 2420-2423.	0.8	8
97	Synergistic effect of V/N codoping by ion implantation on the electronic and optical properties of TiO2. Journal of Applied Physics, 2014, 115, 143106.	2.5	8
98	Spectral Ellipsometry and Electron Backscatter Diffraction Analyses of Silicon Surfaces Implanted with Silver Ions. Journal of Applied Spectroscopy, 2016, 83, 47-50.	0.7	8
99	A diffraction grating created in diamond substrate by boron ion implantation. Technical Physics Letters, 2017, 43, 104-106.	0.7	8
100	Nonlinear absorption of visible light in silicate glasses doped with copper nanoparticles. Quantum Electronics, 2003, 33, 1081-1084.	1.0	7
101	Chemical Functionalization, Self-Assembly, and Applications of Nanomaterials and Nanocomposites. Journal of Nanomaterials, 2014, 2014, 1-2.	2.7	7
102	Raman study of germanium nanowires formed by low energy Ag+ ion implantation. Vacuum, 2021, 184, 109881.	3.5	7
103	Synthesis and nonlinear optical properties of Lif films containing gold nanoparticles. Technical Physics Letters, 2011, 37, 939-941.	0.7	6
104	Laser annealing of dielectrics with metal nanoparticles. Optics and Spectroscopy (English Translation) Tj ETQq0	0 0 rgBT /0	Overlock 10 T
105	New Organic-Inorganic Hybrid Ureasil-Based Polymer Materials Studied by PALS and SEM Techniques. Materials Science Forum, 0, 733, 171-174.	0.3	6
106	Comparative Study of Optical Properties of Polarizing Oxide Glasses with Silver Nanorods and Chalcogenide Glasses with Copper Nanoparticles. Physics Procedia, 2013, 48, 191-195.	1.2	6
107	On the application of methods of positron annihilation spectroscopy for studying radiation-stimulated processes in chalcogenide glassy semiconductors. Semiconductors, 2014, 48, 9-12.	0.5	6
108	Characterization of the Surface of Silver Ion-Implanted Silicon by Optical Reflectance. Journal of Applied Spectroscopy, 2017, 84, 785-789.	0.7	6

#	Article	IF	CITATIONS
109	Sputtering of silicon surface by silver-ion implantation. Nuclear Instruments & Methods in Physics Research B, 2019, 457, 1-3.	1.4	6
110	Swelling and sputtering of porous germanium by silver ions. Composites Communications, 2019, 16, 57-60.	6.3	6
111	Optical reflectance of germanium surface modified by implanted silver ions. Optics Communications, 2020, 474, 126052.	2.1	6
112	Laser annealing of metal-dielectric nanocomposites formed by ion implantation. Philosophical Magazine Letters, 2002, 82, 149-155.	1.2	5
113	The formation of hydrogenated yttrium nanoparticles. Technical Physics Letters, 2002, 28, 642-644.	0.7	5
114	Laser annealing induced melting of silver nanoparticles in a glass matrix. Technical Physics Letters, 2008, 34, 1014-1017.	0.7	5
115	Fabrication and characterization of Ag-implantation modificated TiO2 films followed with thermal annealing. Nuclear Instruments & Methods in Physics Research B, 2013, 307, 373-376.	1.4	5
116	Ion-Irradiation-Induced Carbon Nanostructures in Optoelectronic Polymer Materials. , 0, , .		5
117	Diffraction diamond grating formed by silver-ion mask implantation. Vacuum, 2019, 164, 332-335.	3.5	5
118	An optical study of silver particles fabricated by ion implantation in a silicon polymer. Philosophical Magazine Letters, 1998, 77, 261-266.	1.2	4
119	Low-temperature Raman spectroscopy of copper and silver nanoparticles ion-synthesized in a silica glass and subjected to laser annealing. Physics of the Solid State, 2010, 52, 1255-1259.	0.6	4
120	Low-temperature positron annihilation study of B+-ion implanted PMMA. Low Temperature Physics, 2014, 40, 747-751.	0.6	4
121	Optical characterization of nanocomposite polymer formed by ion implantation of boron. Journal of Materials Science: Materials in Electronics, 2017, 28, 7115-7120.	2.2	4
122	Formation of Cu nanoparticles and Cu3Si phase in Si by ion implantation. Composites Communications, 2020, 21, 100415.	6.3	4
123	Copper nanoparticles synthesized in sapphire by ion implantation. Technical Physics Letters, 2002, 28, 864-867.	0.7	3
124	The formation of periodic diffractive plasmonic nanostructures with implanted copper nanoparticles by local ion etching of silica glass. Technical Physics Letters, 2013, 39, 591-593.	0.7	3
125	Raman spectroscopy of gold nanoparticles in polycrystalline LiF film. Physics of the Solid State, 2013, 55, 1899-1902.	0.6	3
126	Synthesis of porous silicon with silver nanoparticles by low-energy ion implantation. Russian Microelectronics, 2015, 44, 546-551.	0.5	3

#	Article	IF	CITATIONS
127	Effects of Gamma-Irradiation and Ion Implantation in Chalcogenide Glasses. , 2016, , 341-358.		3
128	Plasmon-enhanced luminescence of CdSe quantum dots on the porous silicon with silver nanoparticles. Russian Chemical Bulletin, 2016, 65, 2773-2775.	1.5	3
129	Synthesis of Porous Germanium with Silver Nanoparticles by Ion Implantation. Nanotechnologies in Russia, 2017, 12, 508-513.	0.7	3
130	Ion Implantation as a Method to Form the Porous Germanium with Copper Nanoparticles. Nanotechnologies in Russia, 2018, 13, 487-495.	0.7	3
131	The Effect of Pulsed Laser Radiation on a Si Layer with a High Dose of Implanted Ag+ Ions. Optics and Spectroscopy (English Translation of Optika I Spektroskopiya), 2018, 125, 571-577.	0.6	3
132	Pulse ion annealing of silicon layers with silver nanoparticles formed by ion implantation. Vacuum, 2020, 182, 109724.	3.5	3
133	Incoherent-light pulse annealing of nanoporous germanium layers formed by ion implantation. Vacuum, 2021, 186, 110060.	3.5	3
134	Effect of the target surface temperature on the distribution of nanoparticles formed by ion implantation. Technical Physics Letters, 2001, 27, 554-556.	0.7	2
135	Annealing of europium-implanted silicon by nanosecond ion-beam pulses. Philosophical Magazine Letters, 2001, 81, 29-38.	1.2	2
136	Nonlinear absorption in dielectric layers containing copper nanoparticles. Physics of the Solid State, 2003, 45, 1355-1359.	0.6	2
137	Focusing and manipulation of surface plasmon polaritons by laser fabricated dielectric structures. , 2007, , .		2
138	Specificity of silver nanoparticle synthesis in quartz glass upon low-energy ion implantation. Nanotechnologies in Russia, 2011, 6, 490-495.	0.7	2
139	Spectral Ellipsometry of Cobalt-Ions Implanted Silicon Surface. Solid State Phenomena, 0, 233-234, 526-529.	0.3	2
140	Raman spectra observation of silver nanoparticles in porous silicon fabricated by ion implantation. Nanotechnologies in Russia, 2015, 10, 231-234.	0.7	2
141	Laser Annealing of Metal Nanoparticles Synthesized in Glasses by Ion Implantation. , 2016, , 115-130.		2
142	Luminescence of CdSe quantum dots near a layer of silver nanoparticles ion-synthesized in sapphire. Technical Physics Letters, 2016, 42, 1067-1070.	0.7	2
143	Ag ⁺ -ion implantation of silicon. Phosphorus, Sulfur and Silicon and the Related Elements, 2018, 193, 110-114.	1.6	2
144	A Diamond Diffraction Grating Formed via Ion Implantation. Bulletin of the Russian Academy of Sciences: Physics, 2018, 82, 1047-1051.	0.6	2

#	Article	IF	CITATIONS
145	Photoelectric Properties of Composite Si Layers with Ag Nanoparticles Obtained by Ion Implantation and Laser Annealing. Optics and Spectroscopy (English Translation of Optika I Spektroskopiya), 2019, 126, 144-149.	0.6	2
146	Fabrication of Metal Dielectric Nanocomposites by Ion Implantation and Characterization by Nonlinear Optics Techniques. , 2019, , 159-195.		2
147	Biological cell scaffolds based on nanoporous germanium layers formed by ion implantation. Vacuum, 2020, 177, 109403.	3.5	2
148	Long-range effect in ion-implanted polymers. Vacuum, 2022, 200, 111038.	3.5	2
149	Synthesis of new carbon-nitrogen nanoclusters by annealing diamond-like carbon films in nitrogen. Semiconductors, 2003, 37, 220-223.	0.5	1
150	Modification of the nanostructure of diamond-like carbon films by bombardment with xenon ions. Semiconductors, 2003, 37, 723-726.	0.5	1
151	Evaluation of the dipole interaction of a pair of metal particles in the region of the plasmon resonance. Optics and Spectroscopy (English Translation of Optika I Spektroskopiya), 2005, 98, 107-112.	0.6	1
152	Optical Properties of Metal Nanoparticles Formed by Ion Implantation and Modified by Laser Annealing. NATO Science Series Series II, Mathematics, Physics and Chemistry, 2006, , 139-160.	0.1	1
153	Two-photon polymerization and applications in plasmonics. , 2007, 6581, 174.		1
154	2-Photon Polymerization for Plasmonic Applications. , 2007, , .		1
155	Synthesis of nanostructured yttrium with the use of cluster beams and investigation of the optical and electrical properties of yttrium hydride species. Physics of the Solid State, 2009, 51, 1716-1722.	0.6	1
156	Laser annealing of silica glass with ion-synthesized copper nanoparticles. Physics of the Solid State, 2009, 51, 1912-1918.	0.6	1
157	Magneto-Optics of Cobalt and Nickel Nanoparticles Implanted in SiO ₂ : Comparative Study. Solid State Phenomena, 2014, 215, 214-217.	0.3	1
158	Optical properties of the synthesized ZnO with ion implanted silver nanoparticles. Technical Physics Letters, 2015, 41, 537-539.	0.7	1
159	Formation of Porous Germanium Layers by Silver-Ion Implantation. Technical Physics Letters, 2018, 44, 354-357.	0.7	1
160	New approach to create a counting grid by ion-mask implantation for analysis of small biological objects. Vacuum, 2019, 165, 320-323.	3.5	1
161	Formation of nanoporous Ge layers by ion implantation at different temperatures of c-Ge substrate. Vacuum, 2021, 194, 110552.	3.5	1
162	Laserâ€induced heating of porous Ge layers implanted with Ag ⁺ and Cu ⁺ ions. Journal of Raman Spectroscopy, 0, , .	2.5	1

#	Article	IF	CITATIONS
163	The effect of the irradiated glass target temperature on the implanted silver distribution profile. Technical Physics Letters, 2001, 27, 862-864.	0.7	0
164	Evaluation of efficiency of optical effective medium theories by comparison with the generalized Mie theory for metal nanoparticles. , 0, , .		0
165	Leakage radiation imaging of surface plasmon polaritons. , 0, , .		0
166	Laser-based rapid prototyping of plasmonic components. , 2006, , .		0
167	Optical Components for Surface Plasmon Polaritons Fabricated by Two Photon Polymerization. , 2007,		0
168	Scattering of a surface plasmon polariton beam by chains ofÂdipole nanoparticles. Applied Physics B: Lasers and Optics, 2008, 93, 203-207.	2.2	0
169	Excitation and focusing of surface plasmon polaritons by nanostructuring. Proceedings of SPIE, 2008,	0.8	0
170	Ion synthesis and nonlinear optical properties of metal nanoparticles. Proceedings of SPIE, 2010, , .	0.8	0
171	Laser-based 2D and 3D nanomanufacturing for plasmonic applications. International Journal of Nanomanufacturing, 2010, 6, 3.	0.3	0
172	Laser annealing of metal nanoparticles implanted in dielectrics. , 2010, , .		0
173	Yttrium Nanoparticle Hydrogen Gas Sensors. NATO Science for Peace and Security Series B: Physics and Biophysics, 2011, , 381-389.	0.3	0
174	Laser annealing of metal nanoparticles synthesized in glasses by ion implantation. Proceedings of SPIE, 2017, , .	0.8	0
175	Porous germanium with Ag nanoparticles formed by ion implantation. Journal of Physics: Conference Series, 2018, 1092, 012125.	0.4	0
176	Diffraction grating on chalcogenide glass (GeSe5)80B20 fabricated by mask ion implantation. Nuclear Instruments & Methods in Physics Research B, 2020, 462, 187-190.	1.4	0
177	Ion-assisted stimulating deposition of Pt nanoparticles in SiO2 and optical properties. Applied Physics A: Materials Science and Processing, 2021, 127, 1.	2.3	0
178	Synthesis and characterization of surface embedded silver nanoparticles in ZnO matrix. , 2019, , .		0