Wei Jiang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4850003/publications.pdf

Version: 2024-02-01

106 papers	2,915 citations	31 h-index	189881 50 g-index
107	107	107	2504
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Recent progress in solution processable TADF materials for organic light-emitting diodes. Journal of Materials Chemistry C, 2018, 6, 5577-5596.	5 . 5	370
2	Versatile Graphene Quantum Dots with Tunable Nitrogen Doping. Particle and Particle Systems Characterization, 2014, 31, 597-604.	2.3	124
3	High-triplet-energy tri-carbazole derivatives as host materials for efficient solution-processed blue phosphorescent devices. Journal of Materials Chemistry, 2011, 21, 4918.	6.7	122
4	Tuning of Charge Balance in Bipolar Host Materials for Highly Efficient Solution-Processed Phosphorescent Devices. Organic Letters, 2011, 13, 3146-3149.	4.6	102
5	Self-Host Blue Dendrimer Comprised of Thermally Activated Delayed Fluorescence Core and Bipolar Dendrons for Efficient Solution-Processable Nondoped Electroluminescence. ACS Applied Materials & Samp; Interfaces, 2017, 9, 7339-7346.	8.0	86
6	Endowing TADF luminophors with AIE properties through adjusting flexible dendrons for highly efficient solution-processed nondoped OLEDs. Chemical Science, 2020, 11, 7194-7203.	7.4	74
7	Novel star-shaped host materials for highly efficient solution-processed phosphorescent organic light-emitting diodes. Journal of Materials Chemistry, 2010, 20, 6131.	6.7	71
8	Gut microbiota in patients with obesity and metabolic disorders $\hat{a} \in \text{``a}$ a systematic review. Genes and Nutrition, 2022, 17, 2.	2.5	67
9	Self-host thermally activated delayed fluorescent dendrimers with flexible chains: an effective strategy for non-doped electroluminescent devices based on solution processing. Journal of Materials Chemistry C, 2016, 4, 8810-8816.	5 . 5	66
10	Highly Efficient All-Solution-Processed Fluorescent Organic Light-Emitting Diodes Based on a Novel Self-Host Thermally Activated Delayed Fluorescence Emitter. ACS Applied Materials & Samp; Interfaces, 2017, 9, 21900-21908.	8.0	61
11	Bipolar Host with Multielectron Transport Benzimidazole Units for Low Operating Voltage and High Power Efficiency Solution-Processed Phosphorescent OLEDs. ACS Applied Materials & Samp; Interfaces, 2015, 7, 7303-7314.	8.0	60
12	Star-shaped dendritic hosts based on carbazole moieties for highly efficient blue phosphorescent OLEDs. Journal of Materials Chemistry, 2012, 22, 12016.	6.7	56
13	Simple aggregation–induced delayed fluorescence materials based on anthraquinone derivatives for highly efficient solution–processed red OLEDs. Journal of Luminescence, 2017, 187, 414-420.	3.1	55
14	Bioremediation of typical chlorinated hydrocarbons by microbial reductive dechlorination and its key players: A review. Ecotoxicology and Environmental Safety, 2020, 202, 110925.	6.0	52
15	Visualization and Manipulation of Solid-State Molecular Motions in Cocrystallization Processes. Journal of the American Chemical Society, 2021, 143, 9468-9477.	13.7	52
16	Thermally activated delayed fluorescence materials based on 3,6-di-tert-butyl-9-((phenylsulfonyl)phenyl)-9H-carbazoles. Dyes and Pigments, 2014, 111, 135-144.	3.7	46
17	High Power Efficiency Solution-Processed Blue Phosphorescent Organic Light-Emitting Diodes Using Exciplex-Type Host with a Turn-on Voltage Approaching the Theoretical Limit. ACS Applied Materials & amp; Interfaces, 2015, 7, 25129-25138.	8.0	46
18	Near-infrared thermally activated delayed fluorescent dendrimers for the efficient non-doped solution-processed organic light-emitting diodes. Organic Electronics, 2017, 48, 389-396.	2.6	46

#	Article	IF	CITATIONS
19	Thermally activated delayed fluorescence dendrimers with exciplex-forming dendrons for low-voltage-driving and power-efficient solution-processed OLEDs. Journal of Materials Chemistry C, 2018, 6, 43-49.	5.5	45
20	Design of efficient thermally activated delayed fluorescence blue host for high performance solution-processed hybrid white organic light emitting diodes. Chemical Science, 2019, 10, 3054-3064.	7.4	45
21	Achieving 20% External Quantum Efficiency for Fully Solution-Processed Organic Light-Emitting Diodes Based on Thermally Activated Delayed Fluorescence Dendrimers with Flexible Chains. ACS Applied Materials & Samp; Interfaces, 2019, 11, 16737-16748.	8.0	45
22	Thermally activated delayed fluorescence materials based on benzophenone derivative as emitter for efficient solution-processed non-doped green OLED. Dyes and Pigments, 2016, 133, 380-386.	3.7	44
23	Alcohol-Soluble Electron-Transport Small Molecule for Fully Solution-Processed Multilayer White Electrophosphorescent Devices. Organic Letters, 2014, 16, 1140-1143.	4.6	42
24	Self-host homoleptic green iridium dendrimers based on diphenylamine dendrons for highly efficient single-layer PhOLEDs. Journal of Materials Chemistry C, 2014, 2, 1104-1115.	5 . 5	40
25	Enhanced Electron Affinity and Exciton Confinement in Exciplex-Type Host: Power Efficient Solution-Processed Blue Phosphorescent OLEDs with Low Turn-on Voltage. ACS Applied Materials & Samp; Interfaces, 2016, 8, 2010-2016.	8.0	38
26	Design of Blue Thermally Activated Delayed Fluorescent Emitter with Efficient Exciton Gathering Property for High-Performance Fully Solution-Processed Hybrid White OLEDs. ACS Applied Materials & Samp; Interfaces, 2020, 12, 1190-1200.	8.0	38
27	Design strategy of yellow thermally activated delayed fluorescent dendrimers and their highly efficient non-doped solution-processed OLEDs with low driving voltage. Organic Electronics, 2017, 42, 123-130.	2.6	36
28	Solution-processed efficient deep-blue fluorescent organic light-emitting diodes based on novel 9,10-diphenyl-anthracene derivatives. RSC Advances, 2015, 5, 29708-29717.	3.6	35
29	Bicolour electroluminescence of 2-(carbazol-9-yl)anthraquinone based on a solution process. Journal of Materials Chemistry C, 2017, 5, 12031-12034.	5 . 5	34
30	Electrochemical degradation of phenol on the La and Ru doped Ti/SnO2-Sb electrodes. Korean Journal of Chemical Engineering, 2012, 29, 1178-1186.	2.7	33
31	Thermally activated delayed fluorescence of N-phenylcarbazole and triphenylamine functionalised tris(aryl)triazines. Dyes and Pigments, 2015, 117, 141-148.	3.7	33
32	Strategy for the Realization of Highly Efficient Solution-Processed All-Fluorescence White OLEDs—Encapsulated Thermally Activated Delayed Fluorescent Yellow Emitters. ACS Applied Materials & Samp; Interfaces, 2018, 10, 37335-37344.	8.0	33
33	Molecular core–shell structure design: Facilitating delayed fluorescence in aggregates toward highly efficient solutionâ€processed OLEDs. Aggregate, 2022, 3, .	9.9	33
34	A high triplet energy small molecule based thermally cross-linkable hole-transporting material for solution-processed multilayer blue electrophosphorescent devices. Journal of Materials Chemistry C, 2015, 3, 243-246.	5. 5	31
35	Design of encapsulated hosts and guests for highly efficient blue and green thermally activated delayed fluorescence OLEDs based on a solution-process. Chemical Communications, 2017, 53, 11834-11837.	4.1	31
36	Spatial separation of a TADF sensitizer and fluorescent emitter with a core-dendron system to block the energy loss in deep blue organic light-emitting diodes. Journal of Materials Chemistry C, 2019, 7, 11005-11013.	5 . 5	30

#	Article	IF	Citations
37	Ideal Bipolar Host Materials with Bis-benzimidazole Unit for Highly Efficient Solution-Processed Green Electrophosphorescent Devices. Organic Letters, 2014, 16, 5346-5349.	4.6	28
38	Novel aggregation-induced emission and thermally activated delayed fluorescence materials based on thianthrene-9,9 \hat{a} €2,10,10 \hat{a} €2-tetraoxide derivatives. RSC Advances, 2016, 6, 22137-22143.	3.6	28
39	Design of high triplet energy electron transporting material for exciplex-type host: Efficient blue and white phosphorescent OLEDs based on solution processing. Organic Electronics, 2016, 33, 9-14.	2.6	27
40	Spirobifluorene/sulfone hybrid: Highly efficient solution-processable material for UV–violet electrofluorescence, blue and green phosphorescent OLEDs. Organic Electronics, 2014, 15, 1678-1686.	2.6	25
41	CBP derivatives dendronized self-host TADF dendrimer: Achieving efficient non-doped near-infrared organic light-emitting diodes. Dyes and Pigments, 2017, 147, 436-443.	3.7	25
42	Novel carbazole/pyridine-based host material for solution-processed blue phosphorescent organic light-emitting devices. Dyes and Pigments, 2012, 92, 891-896.	3.7	24
43	Fluorescent sensor of fluorene derivatives having phosphonic acid as a fluorogenic ionophore: synthesis and static quenched properties for Fe(III). Tetrahedron Letters, 2014, 55, 5119-5123.	1.4	22
44	A novel, bipolar host based on triazine for efficient solution-processed single-layer green phosphorescent organic light-emitting diodes. Dyes and Pigments, 2014, 101, 9-14.	3.7	21
45	A bipolar homoleptic iridium dendrimer composed of diphenylphosphoryl and diphenylamine dendrons for highly efficient non-doped single-layer green PhOLEDs. Journal of Materials Chemistry C, 2015, 3, 981-984.	5.5	18
46	Discovery of antitumor ursolic acid long-chain diamine derivatives as potent inhibitors of NF-κB. Bioorganic Chemistry, 2018, 79, 265-276.	4.1	18
47	Thermally cross-linkable thermally activated delayed fluorescent materials for efficient blue solution-processed organic light-emitting diodes. Journal of Materials Chemistry C, 2016, 4, 8973-8979.	5. 5	17
48	Nondoped deep blue OLEDs based on Bis-(4-benzenesulfonyl-phenyl)-9-phenyl-9 H -carbazoles. Journal of Luminescence, 2016, 172, 7-13.	3.1	17
49	Multi-substituted dibenzo[a,c]phenazine derivatives as solution-processable thermally activated delayed fluorescence materials for orange–red organic light-emitting diodes. Dyes and Pigments, 2020, 173, 107957.	3.7	17
50	A novel dibenzimidazole-based fluorescent probe with high sensitivity and selectivity for copper ions. Journal of Photochemistry and Photobiology A: Chemistry, 2021, 406, 113018.	3.9	17
51	Exciplex Formation and Electromer Blocking for Highly Efficient Blue Thermally Activated Delayed Fluorescence OLEDs with Allâ€Solutionâ€Processed Organic Layers. Chemistry - A European Journal, 2020, 26, 3090-3102.	3.3	16
52	Manipulation of the sterically hindering effect to realize AIE and TADF for high-performing nondoped solution-processed OLEDs with extremely low efficiency roll-off. Journal of Materials Chemistry C, 2020, 8, 11850-11859.	5 . 5	16
53	Systematically tuning the \hat{l} E _{ST} and charge balance property of bipolar hosts for low operating voltage and high power efficiency solution-processed electrophosphorescent devices. Journal of Materials Chemistry C, 2015, 3, 5004-5016.	5.5	15
54	Constructing a Novel Dendron for a Selfâ€Host Blue Emitter with Thermally Activated Delayed Fluorescence: Solutionâ€Processed Nondoped Organic Lightâ€Emitting Diodes with Bipolar Charge Transfer and Stable Color Purity. Chemistry - an Asian Journal, 2017, 12, 216-223.	3.3	15

#	Article	IF	Citations
55	Highly efficient and color tunable thermally activated delayed fluorescent emitters and their applications for the solution-processed OLEDs. Dyes and Pigments, 2017, 139, 326-333.	3.7	15
56	High-performance blue phosphorescent and thermally activated delayed fluorescent solution-processed OLEDs based on exciplex host by modifying TCTA. Organic Electronics, 2019, 67, 136-140.	2.6	15
57	Construction of melamine foam–supported WO3/CsPbBr3 S–scheme heterojunction with rich oxygen vacancies for efficient and long–period CO2 photoreduction in liquid–phase H2O environment. Chemical Engineering Journal, 2022, 430, 132820.	12.7	14
58	Synthesis of carbazole-based dendrimer: host material for highly efficient solution-processed blue organic electrophosphorescent diodes. Tetrahedron, 2012, 68, 5800-5805.	1.9	13
59	MAAc Ionic Liquid-Assisted Defect Passivation for Efficient and Stable CsPbIBr ₂ Perovskite Solar Cells. ACS Applied Energy Materials, 2021, 4, 10584-10592.	5.1	13
60	Modulation of charge transfer and π-π interaction toward tunable fluorescence emission in binary cocrystals composed of carbazole derivatives and 1,2,4,5-tetracyanobenzene. Dyes and Pigments, 2021, 193, 109519.	3.7	12
61	Synthesis of new bipolar materials based on diphenylphosphine oxide and triphenylamine units: efficient host for deep-blue phosphorescent organic light-emitting diodes. Tetrahedron, 2012, 68, 9672-9678.	1.9	11
62	A carbazole-based dendritic host material for efficient solution-processed blue phosphorescent OLEDs. Dyes and Pigments, 2013, 97, 286-290.	3.7	10
63	Efficient energy transfer in a new hybrid diphenylfluorene derivative–CdS quantum dot nanocomposite. Nanotechnology, 2013, 24, 435704.	2.6	10
64	Benzonitrile-based AIE polymer host with a simple synthesis process for high-efficiency solution-processable green and blue TADF organic light emitting diodes. Journal of Materials Chemistry C, 2022, 10, 2109-2120.	5.5	10
65	Blocking exciton-quenching pathways in host and guest interfaces for high performance solution-processed TADF OLEDs with external quantum efficiency approaching 25%. Organic Electronics, 2020, 80, 105601.	2.6	9
66	Rational molecular design of novel host material combing intra- and intermolecular charge transfers for efficient solution-processed organic light-emitting diodes. Dyes and Pigments, 2020, 175, 108188.	3.7	9
67	ThermallycFluorescence Materials Based on Triphenylamine/Diphenyl Sulfone. Wuli Huaxue Xuebao/ Acta Physico - Chimica Sinica, 2015, 31, 1621-1628.	4.9	8
68	Tuning the energy gap and charge balance property of bipolar host by molecular modification: Efficient blue electrophosphorescence devices based on solution-process. Organic Electronics, 2015, 24, 65-72.	2.6	8
69	A novel dibenzimidazole-based fluorescent organic molecule as a turn-off fluorescent probe for Cr3+ ion with high sensitivity and quick response. Journal of Molecular Structure, 2020, 1206, 127696.	3.6	8
70	Carbazole-modified polyphenylene ether as host materials for high efficiency phosphorescent organic light-emitting diodes. Optical Materials, 2020, 101, 109781.	3.6	8
71	Enhanced performances of fully solution-processed OLEDs via introducing flexible chains into thermally cross-linked thermally activated delayed fluorescent materials. Dyes and Pigments, 2020, 182, 108624.	3.7	8
72	Phenylcarbazole/diphenylphosphine oxide-based alcohol soluble host materials for efficient solution-processed multilayer blue electrophosphorescent OLEDs. Dyes and Pigments, 2015, 122, 192-198.	3.7	7

#	Article	IF	CITATIONS
73	Reduced efficiency roll-off and enhanced excition confinement in exciplex-type host: Electron transport materials based on benzimidazole units. Dyes and Pigments, 2018, 151, 35-44.	3.7	7
74	Constructing host-Ïf-guest structures to optimize the efficiency of non-doped solution-processed OLEDs. Journal of Materials Chemistry C, 2021, 9, 1221-1227.	5 . 5	7
75	A novel thermally-activated delayed fluorescent probe based on hydroxyl as identify group for detection of iron ions. Journal of Molecular Structure, 2022, 1251, 132074.	3.6	7
76	A periphery hindered strategy with a dopant and sensitizer for solution-processed red TSF-OLEDs with high color purity. Journal of Materials Chemistry C, 2022, 10, 5230-5239.	5 . 5	7
77	Highly Efficient Quasi-2D Perovskite Light-Emitting Diodes Incorporating a TADF Dendrimer as an Exciton-Retrieving Additive. ACS Applied Materials & Samp; Interfaces, 2021, 13, 44585-44595.	8.0	6
78	Highly efficient blue all-solution-processed organic light-emitting diodes based on the strategy of constructing a thermally cross-linkable TADF dendrimer. Dyes and Pigments, 2022, 198, 109967.	3.7	6
79	Para-halogenated triphenyltriazine induced surface passivation toward efficient and stable perovskite solar cells. Applied Surface Science, 2022, 590, 153051.	6.1	6
80	Novel ternary exciplex system based on TCTA dendrimer with a new linking type amongst various functional donors. Journal of Materials Science: Materials in Electronics, 2022, 33, 11403-11413.	2.2	6
81	Preparation, thermostability, and spectroscopic properties of Rhodamine 6G intercalated titanoniobate nanocomposite. Journal of Materials Science, 2011, 46, 2431-2436.	3.7	5
82	Enhanced electron affinity and charge balance property of a bipolar material: highly efficient solution-processed deep blue electrofluorescent and green electrophosphorescent devices. RSC Advances, 2015, 5, 66994-67000.	3 . 6	5
83	High efficiency solution-processed blue electrophosphorescent device with a bipolar host material based on diphenylphosphine oxide unit. New Journal of Chemistry, 2018, 42, 4081-4088.	2.8	5
84	Application and Evolution for Neural Network and Signal Processing in Large-Scale Systems. Complexity, 2021, 2021, 1-7.	1.6	5
85	Endowing deep-red BODIPY luminophors with enhanced aggregation-induced emission by installing miniature rotor of trifluoromethyl for solution-processed OLEDs. Organic Electronics, 2022, 106, 106530.	2.6	5
86	New host materials based on fluorene and benzimidazole units for efficient solution-processed green phosphorescent OLEDs. Optical Materials, 2013, 35, 2201-2207.	3 . 6	4
87	Impact of Physicians' and Patients' Compliance on Outcomes of Colonoscopic Polypectomy With Anti-Thrombotic Therapy. Clinical Gastroenterology and Hepatology, 2020, 19, 2559-2566.e1.	4.4	4
88	Organic Small Molecules Host Materials for Blue Phosphorescent Organic Light-Emitting Diodes. Chinese Journal of Organic Chemistry, 2013, 33, 1395.	1.3	4
89	High efficiency branched thermal activated delayed fluorescent probe based on cyanogroup for detecting Fe3+ with low limit of detection. Dyes and Pigments, 2022, 198, 109970.	3.7	4
90	Beam deflection and splitting using transformation optics. Open Physics, 2011, 9, .	1.7	3

#	Article	IF	CITATIONS
91	Strategy to improve the efficiency of solution-processed phosphorescent organic light-emitting devices by modified TADF host with tert-butyl carbazole. Tetrahedron, 2021, 81, 131869.	1.9	3
92	Aggregation induced intermolecular charge transfer in simple nonconjugated donor–acceptor system. Organic Electronics, 2021, 99, 106309.	2.6	3
93	Creation of efficient solution-processed OLEDs via a strategy of the host-guest system constructing with two small cross-linkable TADF molecules. Organic Electronics, 2022, 101, 106417.	2.6	3
94	Creation of a thermally cross-linkable encapsulated TADF molecule for highly efficient solution-processed hybrid white OLEDs. Organic Electronics, 2022, 102, 106442.	2.6	3
95	Exciton harvesting in quasi-2D perovskite light-emitting diodes with an encapsulated thermally activated delayed fluorescence. Applied Physics Letters, 2021, 119, .	3.3	3
96	Design of matrix-diagonal allocator for efficient network-on-chip routers. , 2017, , .		2
97	A Meroterpenoid Isolated From the Fungus <i>Aspergillus</i> sp Natural Product Communications, 2019, 14, 1934578X1987893.	0.5	2
98	Elevating the triplet level of carbazolyl benzonitrile-based dendritic hosts by suppressing intramolecular charge transfer for solution-processed blue thermally activated delayed fluorescence OLEDs. Optical Materials, 2020, 104, 109941.	3.6	2
99	Spatial regulation of electroplex emission via dendritic molecular engineering. Journal of Materials Chemistry C, O, , .	5.5	2
100	Thermally activated delayed fluorescence fluorescent probe based on triazine as emission core for metal ions detection. Optical Materials, 2021, 119, 111303.	3.6	2
101	Rational design of multi-functional thermally activated delayed fluorescence emitters for both sensor and OLED applications. New Journal of Chemistry, 2022, 46, 10940-10950.	2.8	2
102	Effect of drying and calcination on the toluene combustion activity of a monolithic CuMnAg/ \hat{I}^3 :£;Al ₂ 0 ₃ /cordierite catalyst. Journal of Chemical Technology and Biotechnology, 2010, 85, 569-576.	3.2	1
103	Thermally Activated Delayed Fluorescence Materials Based on Carbazole/Sulfone. Advanced Materials Research, 2014, 1044-1045, 158-163.	0.3	1
104	Bis(phosphine oxide)/triphenylamine based material for solution-processed blue electrofluorescent and green electrophosphorescent devices. RSC Advances, 2015, 5, 48654-48658.	3.6	1
105	An effective thermally activated delayed fluorescence host material for highly efficient blue phosphorescent organic light-emitting diodes with low doping concentration. Journal of Photochemistry and Photobiology A: Chemistry, 2020, 388, 112178.	3.9	1
106	Verification of Classification Model and Dendritic Neuron Model Based on Machine Learning. Discrete Dynamics in Nature and Society, 2022, 2022, 1-14.	0.9	1