
## Xiaowang Liu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4849808/publications.pdf

Version: 2024-02-01



XIAOWANG LIU

| #  | Article                                                                                                                                                                                                                                      | IF   | CITATIONS |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 1  | Tuning Luminescence of Lanthanide-Doped Upconversion Nanoparticles through Simultaneous Binary<br>Cation Exchange. ACS Applied Materials & Interfaces, 2022, 14, 10947-10954.                                                                | 8.0  | 7         |
| 2  | The Design and Bioimaging Applications of NIR Fluorescent Organic Dyes with High Brightness.<br>Advanced Optical Materials, 2022, 10, .                                                                                                      | 7.3  | 45        |
| 3  | Self-assembly of colloidal inorganic nanocrystals: nanoscale forces, emergent properties and applications. Chemical Society Reviews, 2021, 50, 2074-2101.                                                                                    | 38.1 | 54        |
| 4  | Enantiospecific Detection of Dâ€Amino Acid through Synergistic Upconversion Energy Transfer.<br>Angewandte Chemie - International Edition, 2021, 60, 19648-19652.                                                                            | 13.8 | 13        |
| 5  | Enantiospecific Detection of Dâ€Amino Acid through Synergistic Upconversion Energy Transfer.<br>Angewandte Chemie, 2021, 133, 19800-19804.                                                                                                   | 2.0  | 2         |
| 6  | Recent Development in X-Ray Imaging Technology: Future and Challenges. Research, 2021, 2021, 9892152.                                                                                                                                        | 5.7  | 65        |
| 7  | Cobalt Singleâ€Atomâ€Intercalated Molybdenum Disulfide for Sulfide Oxidation with Exceptional<br>Chemoselectivity. Advanced Materials, 2020, 32, e1906437.                                                                                   | 21.0 | 62        |
| 8  | A General Strategy for Hollow Metalâ€Phytate Coordination Complex Micropolyhedra Enabled by<br>Cation Exchange. Angewandte Chemie - International Edition, 2020, 59, 20988-20995.                                                            | 13.8 | 21        |
| 9  | A General Strategy for Hollow Metalâ€Phytate Coordination Complex Micropolyhedra Enabled by<br>Cation Exchange. Angewandte Chemie, 2020, 132, 21174-21181.                                                                                   | 2.0  | 6         |
| 10 | Enhancing Electrochemical Hydrogen Evolution Performance of CoMoO <sub>4</sub> -Based<br>Microrod Arrays in Neutral Media through Alkaline Activation. ACS Applied Materials &<br>Interfaces, 2020, 12, 30905-30914.                         | 8.0  | 22        |
| 11 | Dual-Mode Long-Lived Luminescence of Mn <sup>2+</sup> -Doped Nanoparticles for Multilevel<br>Anticounterfeiting. ACS Applied Materials & Interfaces, 2019, 11, 30146-30153.                                                                  | 8.0  | 42        |
| 12 | Simultaneous and Reversible Triggering of the Phase Transfer and Luminescence Change of<br>Amidine-Modified Carbon Dots by CO <sub>2</sub> . ACS Applied Materials & Interfaces, 2019, 11,<br>22851-22857.                                   | 8.0  | 7         |
| 13 | Ultrastable and efficient H <sub>2</sub> production <i>via</i> membrane-free hybrid water<br>electrolysis over a bifunctional catalyst of hierarchical Mo–Ni alloy nanoparticles. Journal of<br>Materials Chemistry A, 2019, 7, 16501-16507. | 10.3 | 49        |
| 14 | Tuning Longâ€Lived Mn(II) Upconversion Luminescence through Alkalineâ€Earth Metal Doping and<br>Energyâ€Level Tailoring. Advanced Optical Materials, 2019, 7, 1900519.                                                                       | 7.3  | 24        |
| 15 | SiO <sub>2</sub> -Encompassed Co@N-Doped Porous Carbon Assemblies as Recyclable Catalysts for<br>Efficient Hydrolysis of Ammonia Borane. Langmuir, 2019, 35, 671-677.                                                                        | 3.5  | 40        |
| 16 | Colloidal Synthesis of Mo–Ni Alloy Nanoparticles as Bifunctional Electrocatalysts for Efficient<br>Overall Water Splitting. Advanced Materials Interfaces, 2018, 5, 1800359.                                                                 | 3.7  | 42        |
| 17 | Water Splitting Catalysts: Colloidal Synthesis of Mo-Ni Alloy Nanoparticles as Bifunctional<br>Electrocatalysts for Efficient Overall Water Splitting (Adv. Mater. Interfaces 13/2018). Advanced<br>Materials Interfaces, 2018, 5, 1870063.  | 3.7  | 4         |
| 18 | Lanthanide-Activated Phosphors Based on 4f-5d Optical Transitions: Theoretical and Experimental<br>Aspects. Chemical Reviews, 2017, 117, 4488-4527.                                                                                          | 47.7 | 702       |

XIAOWANG LIU

| #  | Article                                                                                                                                                                                                            | IF   | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 19 | Pd–ZnO nanowire arrays as recyclable catalysts for 4-nitrophenol reduction and Suzuki coupling reactions. RSC Advances, 2017, 7, 7964-7972.                                                                        | 3.6  | 29        |
| 20 | Detection of catechin in Chinese green teas at N-doped carbon-modified electrode. lonics, 2017, 23, 1889-1895.                                                                                                     | 2.4  | 13        |
| 21 | Core–shell N-doped carbon spheres for high-performance supercapacitors. Journal of Materials<br>Science, 2017, 52, 9673-9682.                                                                                      | 3.7  | 19        |
| 22 | Static pressure-induced neural differentiation of mesenchymal stem cells. Nanoscale, 2017, 9, 10031-10037.                                                                                                         | 5.6  | 9         |
| 23 | Ag <sub>1</sub> Pd <sub>1</sub> Nanoparticles–Reduced Graphene Oxide as a Highly Efficient and<br>Recyclable Catalyst for Direct Aryl Câ^'H Olefination. Chemistry - A European Journal, 2017, 23,<br>17659-17662. | 3.3  | 23        |
| 24 | Binary temporal upconversion codes of Mn2+-activated nanoparticles for multilevel anti-counterfeiting. Nature Communications, 2017, 8, 899.                                                                        | 12.8 | 290       |
| 25 | Hedgehogâ€Like Upconversion Crystals: Controlled Growth and Molecular Sensing at Singleâ€Particle<br>Level. Advanced Materials, 2017, 29, 1702315.                                                                 | 21.0 | 38        |
| 26 | A facile approach for synthesizing Fe-based layered double hydroxides with high purity and its exfoliation. Journal of Colloid and Interface Science, 2016, 467, 28-34.                                            | 9.4  | 15        |
| 27 | A general and rapid approach to hybrid metal nanoparticle–ZnO nanowire arrays and their use as<br>active substrates for surface-enhanced Raman scattering detection. RSC Advances, 2016, 6, 1542-1548.             | 3.6  | 6         |
| 28 | Thiazole derivative-modified upconversion nanoparticles for Hg <sup>2+</sup> detection in living cells. Nanoscale, 2016, 8, 276-282.                                                                               | 5.6  | 82        |
| 29 | Energy Migration Upconversion in Manganese(II)â€Đoped Nanoparticles. Angewandte Chemie -<br>International Edition, 2015, 54, 13312-13317.                                                                          | 13.8 | 64        |
| 30 | Probing the nature of upconversion nanocrystals: instrumentation matters. Chemical Society Reviews, 2015, 44, 1479-1508.                                                                                           | 38.1 | 176       |
| 31 | Bimetallic Nanoparticles: Kinetic Control Matters. Angewandte Chemie - International Edition, 2012, 51, 3311-3313.                                                                                                 | 13.8 | 43        |
| 32 | Ethylenediamine inducing growth of {100} facets exposed PbS nanosheets. Crystal Research and Technology, 2012, 47, 635-642.                                                                                        | 1.3  | 12        |
| 33 | Dynamic isomers engaged fabrication of copper sulfide rattle-type structures and their optoelectronic properties. CrystEngComm, 2011, 13, 5653.                                                                    | 2.6  | 17        |
| 34 | Cu2O microcrystals: a versatile class of self-templates for the synthesis of porous Au nanocages with various morphologies. RSC Advances, 2011, 1, 1119.                                                           | 3.6  | 30        |
| 35 | Aligned ZnO nanorods: A useful film to fabricate amperometric glucose biosensor. Colloids and Surfaces B: Biointerfaces, 2009, 74, 154-158.                                                                        | 5.0  | 84        |
| 36 | Magnetic Chitosan Nanocomposites: A Useful Recyclable Tool for Heavy Metal Ion Removal. Langmuir,<br>2009, 25, 3-8.                                                                                                | 3.5  | 480       |

| #  | Article                                                                                                                                                          | IF  | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 37 | Carboxyl Enriched Monodisperse Porous Fe <sub>3</sub> O <sub>4</sub> Nanoparticles with Extraordinary Sustained-Release Property. Langmuir, 2009, 25, 7244-7248. | 3.5 | 53        |