List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4849643/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Freezability prediction of boar ejaculates assessed by functional sperm parameters and sperm proteins. Theriogenology, 2009, 72, 930-948.	0.9	89
2	Artificial insemination with frozenâ€ŧhawed boar sperm. Molecular Reproduction and Development, 2017, 84, 802-813.	1.0	88
3	Good and bad freezability boar ejaculates differ in the integrity of nucleoprotein structure after freeze-thawing but not in ROS levels. Theriogenology, 2013, 79, 929-939.	0.9	75
4	Acrosin-binding protein (ACRBP) and triosephosphate isomerase (TPI) areÂgood markers to predict boar sperm freezing capacity. Theriogenology, 2013, 80, 443-450.	0.9	74
5	Comparative analysis of boar seminal plasma proteome from different freezability ejaculates and identification of Fibronectin 1 as sperm freezability marker. Andrology, 2015, 3, 345-356.	1.9	72
6	Semen quality of postpubertal boars during increasing and decreasing natural photoperiods. Theriogenology, 2004, 62, 1271-1282.	0.9	70
7	Effects of different concentrations of enterotoxigenic and verotoxigenic E. coli on boar sperm quality. Animal Reproduction Science, 2011, 127, 176-182.	0.5	70
8	Supplementing cryopreservation media with reduced glutathione increases fertility and prolificacy of sows inseminated with frozenâ€thawed boar semen. Andrology, 2014, 2, 88-99.	1.9	66
9	Current knowledge on boar sperm metabolism: Comparison with other mammalian species. Theriogenology, 2016, 85, 4-11.	0.9	62
10	Aquaporins in the male reproductive tract and sperm: Functional implications and cryobiology. Reproduction in Domestic Animals, 2017, 52, 12-27.	0.6	62
11	The HSP90AA1 sperm content and the prediction of the boar ejaculate freezability. Theriogenology, 2010, 74, 940-950.	0.9	61
12	The Increase in Phosphorylation Levels of Serine Residues of Protein HSP70 during Holding Time at 17°C Is Concomitant with a Higher Cryotolerance of Boar Spermatozoa. PLoS ONE, 2014, 9, e90887.	1.1	60
13	Effects of Enterobacter cloacae on boar sperm quality during liquid storage at 17°C. Animal Reproduction Science, 2014, 148, 72-82.	0.5	57
14	Reduced glutathione and procaine hydrochloride protect the nucleoprotein structure of boar spermatozoa during freeze–thawing by stabilising disulfide bonds. Reproduction, Fertility and Development, 2013, 25, 1036.	0.1	56
15	Effects of cryopreservation on semen quality and the expression of sperm membrane hexose transporters in the spermatozoa of Iberian pigs. Reproduction, 2007, 134, 111-121.	1.1	53
16	The effects on boar sperm quality of dietary supplementation with omega-3 polyunsaturated fatty acids differ among porcine breeds. Theriogenology, 2011, 76, 184-196.	0.9	52
17	The improving effect of reduced glutathione on boar sperm cryotolerance is related with the intrinsic ejaculate freezability. Cryobiology, 2014, 68, 251-261.	0.3	51
18	A diet supplemented with l-carnitine improves the sperm quality of Piétrain but not of Duroc and Large White boars when photoperiod and temperature increase. Theriogenology, 2010, 73, 577-586.	0.9	49

#	Article	IF	CITATIONS
19	Relationship of sperm small heat-shock protein 10 and voltage-dependent anion channel 2 with semen freezability in boars. Theriogenology, 2014, 82, 418-426.	0.9	47
20	Freeze-thawing induces alterations in the protamine-1/DNA overall structure in boar sperm. Theriogenology, 2008, 69, 1083-1094.	0.9	44
21	Development of a protocol for multiple staining with fluorochromes to assess the functional status of boar spermatozoa. Microscopy Research and Technique, 2005, 68, 277-283.	1.2	43
22	Effects of different concentrations of Pseudomonas aeruginosa on boar sperm quality. Animal Reproduction Science, 2014, 150, 96-106.	0.5	43
23	Supplementing culture and vitrification-warming media with l-ascorbic acid enhances survival rates and redox status of IVP porcine blastocysts via induction of GPX1 and SOD1 expression. Cryobiology, 2014, 68, 451-458.	0.3	41
24	Characterization of the glycoconjugates of boar testis and epididymis. Reproduction, 2000, , 325-335.	1.1	41
25	Testicular structure and semicystic spermatogenesis in a specialized ovuliparous species: Scorpaena notata (Pisces, Scorpaenidae). Acta Zoologica, 2002, 83, 213-219.	0.6	40
26	Relationship of aquaporins 3 (<scp>AQP</scp> 3), 7 (<scp>AQP</scp> 7), and 11 (<scp>AQP</scp> 11) with boar sperm resilience to withstand freeze–thawing procedures. Andrology, 2017, 5, 1153-1164.	1.9	40
27	Effects of a high semen-collection frequency on the quality of sperm from ejaculates and from six epididymal regions in boars. Theriogenology, 2005, 63, 2219-2232.	0.9	38
28	Comparative effects of adding β-mercaptoethanol or L-ascorbic acid to culture or vitrification–warming media on IVF porcine embryos. Reproduction, Fertility and Development, 2014, 26, 875.	0.1	38
29	Effects of vitrification on the expression of pluripotency, apoptotic and stress genes in in vitro-produced porcine blastocysts. Reproduction, Fertility and Development, 2015, 27, 1072.	0.1	38
30	Specific LED-based red light photo-stimulation procedures improve overall sperm function and reproductive performance of boar ejaculates. Scientific Reports, 2016, 6, 22569.	1.6	38
31	A comparative study of the effects of Escherichia coli and Clostridium perfringens upon boar semen preserved in liquid storage. Animal Reproduction Science, 2017, 177, 65-78.	O.5	38
32	Annual reproductive cycle of Helicolenus dactylopterus dactylopterus (Teleostei: Scorpaeniformes) with special reference to the ovaries sperm storage. Journal of the Marine Biological Association of the United Kingdom, 1999, 79, 521-529.	0.4	37
33	Fertility after post-cervical artificial insemination with cryopreserved sperm from boar ejaculates of good and poor freezability. Animal Reproduction Science, 2010, 118, 69-76.	O.5	37
34	Direct contact between boar spermatozoa and porcine oviductal epithelial cell (OEC) cultures is needed for optimal sperm survival in vitro. Animal Reproduction Science, 2009, 113, 263-278.	0.5	36
35	Hexose-specificity of hexokinase and ADP-dependence of pyruvate kinase play important roles in the control of monosaccharide utilization in freshly diluted boar spermatozoa. Molecular Reproduction and Development, 2006, 73, 1179-1194.	1.0	34
36	Evaluation of sperm motility with CASA-Mot: which factors may influence our measurements?. Reproduction, Fertility and Development, 2018, 30, 789.	0.1	34

#	Article	IF	CITATIONS
37	Sperm malformations throughout the boar epididymal duct. Animal Reproduction Science, 1996, 43, 221-239.	0.5	33
38	Aquaporins 7 and 11 in boar spermatozoa: detection, localisation and relationship with sperm quality. Reproduction, Fertility and Development, 2016, 28, 663.	0.1	31
39	Boar spermatozoa and prostaglandin F2α. Animal Reproduction Science, 2008, 108, 180-195.	0.5	30
40	Study of the proacrosin - acrosin system in epididymal, ejaculated and in vitro capacitated boar spermatozoa. Reproduction, Fertility and Development, 2011, 23, 837.	0.1	30
41	Viable and morphologically normal boar spermatozoa alter the expression of heatâ€shock protein genes in oviductal epithelial cells during coâ€culture in vitro. Molecular Reproduction and Development, 2014, 81, 805-819.	1.0	30
42	GSTM3, but not IZUMO1, is a cryotolerance marker of boar sperm. Journal of Animal Science and Biotechnology, 2019, 10, 61.	2.1	30
43	Hyaluronic acid delays boar sperm capacitation after 3 days of storage at 15°C. Animal Reproduction Science, 2008, 109, 236-250.	0.5	29
44	How do different concentrations of Clostridium perfringens affect the quality of extended boar spermatozoa?. Animal Reproduction Science, 2013, 140, 83-91.	0.5	29
45	Ultrastructural study of the boar seminiferous epithelium: Changes in cryptorchidism. Journal of Morphology, 2000, 244, 190-202.	0.6	28
46	Do antimicrobial peptides PR-39, PMAP-36 and PMAP-37 have any effect on bacterial growth and quality of liquid-stored boar semen?. Theriogenology, 2017, 89, 235-243.	0.9	28
47	Subjecting horse spermatozoa to hypoosmotic incubation: Effects of ouabain. Theriogenology, 1997, 47, 765-784.	0.9	27
48	Unilateral spontaneous abdominal cryptorchidism: structural and ultrastructural study of sperm morphology. Animal Reproduction Science, 1998, 49, 247-268.	0.5	27
49	The osmotic tolerance of boar spermatozoa and its usefulness as sperm quality parameter. Animal Reproduction Science, 2010, 119, 265-274.	0.5	27
50	The triple role of glutathione S-transferases in mammalian male fertility. Cellular and Molecular Life Sciences, 2020, 77, 2331-2342.	2.4	27
51	Resistance to osmotic stress of horse spermatozoa: The role of ionic pumps and their relationship to cryopreservation success. Theriogenology, 1997, 48, 947-968.	0.9	26
52	Effect of Pseudomonas aeruginosa on sperm capacitation andÂprotein phosphorylation of boar spermatozoa. Theriogenology, 2016, 85, 1421-1431.	0.9	26
53	Potential of seminal plasma to improve the fertility of frozen-thawed boar spermatozoa. Theriogenology, 2019, 137, 36-42.	0.9	26
54	Concentrations of carnitine, glutamate and myo-inositol in epididymal fluid and spermatozoa from boars. Animal Reproduction Science, 2007, 97, 344-355.	0.5	25

#	Article	IF	CITATIONS
55	Lectin affinity of the seminiferous epithelium in healthy and cryptorchid post-pubertal boars. Journal of Developmental and Physical Disabilities, 2001, 24, 153-164.	3.6	23
56	Aquaglyceroporins 3 and 7 in bull spermatozoa: identification, localisation and their relationship with sperm cryotolerance. Reproduction, Fertility and Development, 2017, 29, 1249.	0.1	23
57	Triosephosphate isomerase (TPI) and epididymal secretory glutathione peroxidase (GPX5) are markers for boar sperm quality. Animal Reproduction Science, 2016, 165, 22-30.	0.5	22
58	Evaluation of porcine beta defensins-1 and -2 as antimicrobial peptides for liquid-stored boar semen: Effects on bacterial growth and sperm quality. Theriogenology, 2018, 111, 9-18.	0.9	22
59	New data on aberrant spermatozoa in the ejaculate of. Theriogenology, 1991, 35, 725-730.	0.9	21
60	The cycle of the seminiferous epithelium in Landrace boars. Animal Reproduction Science, 2002, 73, 211-225.	0.5	21
61	Impact of epididymal maturation, ejaculation and in vitro capacitation on tyrosine phosphorylation patterns exhibited of boar (Sus domesticus) spermatozoa. Theriogenology, 2011, 76, 1356-1366.	0.9	21
62	Impact of light irradiation on preservation and function of mammalian spermatozoa. Animal Reproduction Science, 2018, 194, 19-32.	0.5	21
63	Aquaporin 11 is related to cryotolerance and fertilising ability of frozen–thawed bull spermatozoa. Reproduction, Fertility and Development, 2018, 30, 1099.	0.1	21
64	SHORT COMMUNICATION: Origin, development and ultrastructure of boar spermatozoa with folded tails and with two tails. Human Reproduction, 1992, 7, 523-529.	0.4	20
65	Proliferation and apoptosis of spermatogonia in postpuberal boar (Sus domesticus) testes with spontaneous unilateral and bilateral abdominal cryptorchidism. Acta Histochemica, 2005, 107, 365-372.	0.9	20
66	Study of the polyol pathway in the porcine epididymis. Molecular Reproduction and Development, 2006, 73, 859-865.	1.0	20
67	Aquaglyceroporins but not orthodox aquaporins are involved in the cryotolerance of pig spermatozoa. Journal of Animal Science and Biotechnology, 2019, 10, 77.	2.1	20
68	Immature and aberrant spermatozoa in the ejaculate of Sus domesticus. Animal Reproduction Science, 1990, 22, 67-80.	0.5	19
69	Morphologic study of the testes from spontaneous unilateral and bilateral abdominal cryptorchid boars. Journal of Morphology, 1999, 239, 225-243.	0.6	19
70	Expression, immunolocalization and processing of fertilins ADAM-1 and ADAM-2 in the boar (sus) Tj ETQq0 0 0 r 2011, 9, 96.	gBT /Over 1.4	lock 10 Tf 50 19
71	Glutathione S-Transferases Play a Crucial Role in Mitochondrial Function, Plasma Membrane Stability and Oxidative Regulation of Mammalian Sperm. Antioxidants, 2020, 9, 100.	2.2	19
72	Characterization of the semen quality of postpuberal boars with spontaneous unilateral abdominal cryptorchidism on the right side. Animal Reproduction Science, 1999, 55, 269-278.	0.5	18

#	Article	IF	CITATIONS
73	Sperm Storage Structures in the Ovary of Helicolenus dactylopterus dactylopterus (Teleostei:) Tj ETQq1 1 0.78	84314 rgBT 0.4	/Overlock 10
74	Gametogenesis of Helicolenus dactylopterus dactylopterus (Teleostei, Scorpaenidae). Sarsia, 2002, 87, 119-127.	0.5	18
75	Structural and ultrastructural features of boar bulbourethral glands. Tissue and Cell, 2006, 38, 7-18.	1.0	18
76	A Proper Assessment of Boar Sperm Function May Not Only Require Conventional Analyses but Also Others Focused on Molecular Markers of Epididymal Maturation. Reproduction in Domestic Animals, 2012, 47, 52-64.	0.6	18
77	Acrosin activity is a suitable indicator of boar semen preservation at 17 °C when increasing environmental temperature and radiation. Theriogenology, 2013, 80, 234-247.	0.9	18
78	Aquaporins in boar spermatozoa. Part II: detection and localisation of aquaglyceroporin 3. Reproduction, Fertility and Development, 2017, 29, 703.	0.1	18
79	Effect of column filtration upon the quality parameters of fresh dog semen. Theriogenology, 1998, 50, 1171-1189.	0.9	17
80	Morphologic and histochemical study of blood capillaries in boar testes: Effects of abdominal cryptorchidism. Teratology, 2001, 63, 42-51.	1.8	17
81	Acrosin activity is a good predictor of boar sperm freezability. Theriogenology, 2015, 83, 1525-1533.	0.9	17
82	Sperm quality and fertility of boar seminal doses after 2Âdays of storage: Does the type of extender really matter?. Theriogenology, 2015, 83, 1428-1437.	0.9	17
83	A morphologic study of the ductus of the epididymis ofSus domesticus. Journal of Morphology, 1993, 215, 183-193.	0.6	16
84	Cryotolerance of porcine in vitro-produced blastocysts relies on blastocyst stage and length of in vitro culture prior to vitrification. Reproduction, Fertility and Development, 2016, 28, 886.	0.1	16
85	The Presence of Seminal Plasma during Liquid Storage of Pig Spermatozoa at 17 °C Modulates Their Ability to Elicit In Vitro Capacitation and Trigger Acrosomal Exocytosis. International Journal of Molecular Sciences, 2020, 21, 4520.	1.8	16
86	Effects of exposing boars to different artificial light regimens on semen plasma markers and "in vivo― fertilizing capacity. Theriogenology, 2006, 65, 317-331.	0.9	15
87	Effects of Filtration of Semen Doses from Subfertile Boars through Neuter Sephadex Columns. Reproduction in Domestic Animals, 2008, 43, 48-52.	0.6	15
88	Epididymal maturation and ejaculation are key events for further in vitro capacitation of boar spermatozoa. Theriogenology, 2012, 78, 867-877.	0.9	15
89	HVCN1 Channels Are Relevant for the Maintenance of Sperm Motility During In Vitro Capacitation of Pig Spermatozoa. International Journal of Molecular Sciences, 2020, 21, 3255.	1.8	15
90	Effects of the antimicrobial peptide protegrine 1 on sperm viability and bacterial load of boar seminal doses. Reproduction in Domestic Animals, 2017, 52, 69-71.	0.6	14

#	Article	IF	CITATIONS
91	Melatonin affects the motility and adhesiveness of inÂvitro capacitated boar spermatozoa via a mechanism that does not depend on intracellular <scp>ROS</scp> levels. Andrology, 2018, 6, 720-736.	1.9	14
92	Study of boar sperm interaction with Escherichia coli and Clostridium perfringens in refrigerated semen. Animal Reproduction Science, 2018, 197, 134-144.	0.5	14
93	Sperm chromatin condensation as an in vivo fertility biomarker in bulls: a flow cytometry approach. Journal of Animal Science and Biotechnology, 2021, 12, 115.	2.1	14
94	Description of different stages of oogenesis in Ophidion barbatum (Pisces, Ophidiidae). Environmental Biology of Fishes, 1993, 36, 127-133.	0.4	13
95	Structural and ultrastructural features of boar seminal vesicles. Tissue and Cell, 2006, 38, 79-91.	1.0	13
96	Boar sperm thawing practices: The number of straws does matter. Theriogenology, 2012, 77, 1487-1494.	0.9	13
97	Cryotolerance of in vitro-produced porcine blastocysts is improved when using glucose instead of pyruvate and lactate during the first 2 days of embryo culture. Reproduction, Fertility and Development, 2013, 25, 737.	0.1	13
98	Histochemical Study of the Interstitial Tissue in Scrotal and Abdominal Boar Testes. Veterinary Journal, 2002, 163, 68-76.	0.6	12
99	Effects of Matrix Filtration of Lowâ€Quality Boar Semen Doses on Sperm Quality. Reproduction in Domestic Animals, 2009, 44, 499-503.	0.6	12
100	Direct binding of boar ejaculate and epididymal spermatozoa to porcine epididymal epithelial cells is also needed to maintain sperm survival in in vitro co-culture. Animal Reproduction Science, 2012, 131, 181-193.	0.5	12
101	Addition of L-ascorbic acid to culture and vitrification media of IVF porcine blastocysts improves survival and reduces HSPA1A levels of vitrified embryos. Reproduction, Fertility and Development, 2015, 27, 1115.	0.1	12
102	Cryotolerance of Stallion Spermatozoa Relies on Aquaglyceroporins rather than Orthodox Aquaporins. Biology, 2019, 8, 85.	1.3	12
103	Elucidating the Role of K+ Channels during In Vitro Capacitation of Boar Spermatozoa: Do SLO1 Channels Play a Crucial Role?. International Journal of Molecular Sciences, 2019, 20, 6330.	1.8	12
104	Red LED Light Acts on the Mitochondrial Electron Chain of Mammalian Sperm via Light-Time Exposure-Dependent Mechanisms. Cells, 2020, 9, 2546.	1.8	12
105	Ultrastructural abnormalities of boar spermatozoa. Theriogenology, 1993, 40, 383-396.	0.9	11
106	Effects of filtration through Sephadex columns improve overall quality parameters and "in vivo― fertility of subfertile refrigerated boar-semen. Animal Reproduction Science, 2009, 115, 189-200.	0.5	11
107	Glycocalyx characterisation and glycoprotein expression of Sus domesticus epididymal sperm surface samples. Reproduction, Fertility and Development, 2012, 24, 619.	0.1	11
108	Enhanced water and cryoprotectant permeability of porcine oocytes after artificial expression of human and zebrafish aquaporinâ€3 channels. Molecular Reproduction and Development, 2014, 81, 450-461.	1.0	11

#	Article	IF	CITATIONS
109	Redâ€light stimulation of boar semen prior to artificial insemination improves field fertility in farms: A worldwide survey. Reproduction in Domestic Animals, 2019, 54, 1145-1148.	0.6	11
110	In vitro culture of epithelial cells from the caput, corpus, and cauda epididymis of Sus domesticus. Theriogenology, 2004, 62, 929-942.	0.9	10
111	Boar Reproduction. , 2013, , .		10
112	Embryo development and sex ratio of in vitro-produced porcine embryos are affected by the energy substrate and hyaluronic acid added to the culture medium. Reproduction, Fertility and Development, 2014, 26, 570.	0.1	10
113	Effect of AQP Inhibition on Boar Sperm Cryotolerance Depends on the Intrinsic Freezability of the Ejaculate. International Journal of Molecular Sciences, 2019, 20, 6255.	1.8	10
114	Blocking NHE Channels Reduces the Ability of In Vitro Capacitated Mammalian Sperm to Respond to Progesterone Stimulus. International Journal of Molecular Sciences, 2021, 22, 12646.	1.8	10
115	Ultrastructure of the sperm and spermatogenesis and spermiogenesis ofDina lineata (hirudinea,) Tj ETQq1 1 0.7	84314 rgBT 1.7	- Overlock 1
116	1H Nuclear Magnetic Resonance of Pig Seminal Plasma Reveals Intra-Ejaculate Variation in Metabolites. Biomolecules, 2020, 10, 906.	1.8	9
117	Complete Chromatin Decondensation of Pig Sperm Is Required to Analyze Sperm DNA Breaks With the Comet Assay. Frontiers in Cell and Developmental Biology, 2021, 9, 675973.	1.8	9
118	A Review on the Role of Bicarbonate and Proton Transporters during Sperm Capacitation in Mammals. International Journal of Molecular Sciences, 2022, 23, 6333.	1.8	9
119	Efficiency of the process of meiosis in scrotal testes of healthy boars and unilateral abdominal cryptorchid boars. , 1999, 60, 209-214.		8
120	Cytology of the interstitial tissue in scrotal and abdominal testes of post-puberal boars. Tissue and Cell, 2001, 33, 8-24.	1.0	8
121	Evaluation of boar sperm maturation after co-incubation with caput, corpus and cauda epididymal cultures. Theriogenology, 2005, 64, 1995-2009.	0.9	8
122	Proteomic study of the establishment of boar epididymal cell cultures. Theriogenology, 2007, 68, 76-86.	0.9	8
123	Voltageâ€dependent anion channel 2 is involved in in vitro capacitation of boar sperm. Reproduction in Domestic Animals, 2017, 52, 65-68.	0.6	8
124	Supplementing Maturation Medium With Insulin Growth Factor I and Vitrification-Warming Solutions With Reduced Glutathione Enhances Survival Rates and Development Ability of in vitro Matured Vitrified-Warmed Pig Oocytes. Frontiers in Physiology, 2018, 9, 1894.	1.3	8
125	Long-term storage of boar seminal doses contaminated with Proteus vulgaris: A dose-dependent effect on sperm motility and sperm-bacteria interaction. Animal Reproduction Science, 2020, 216, 106349.	0.5	8
126	Inhibition of Potassium Channels Affects the Ability of Pig Spermatozoa to Elicit Capacitation and Trigger the Acrosome Exocytosis Induced by Progesterone. International Journal of Molecular Sciences, 2021, 22, 1992.	1.8	7

#	Article	IF	CITATIONS
127	The TUNEL assay underestimates the incidence of DNA damage in pig sperm due to chromatin condensation. Theriogenology, 2021, 174, 94-101.	0.9	7
128	Comparison between the conventional method and the simple desiccation method in porcine sperm processing for scanning electron microscopy. Journal of Microscopy, 1991, 162, 291-294.	0.8	6
129	Conadal structure and gametogenesis ofAspitrigla obscura(Pisces, Triglidae). Italian Journal of Zoology, 2001, 68, 39-46.	0.6	6
130	Morphological and histochemical characteristics of the lamina propria in scrotal and abdominal testes from postpubertal boars: correlation with the appearance of the seminiferous epithelium. Journal of Anatomy, 2001, 199, 435-448.	0.9	6
131	Exogenous Albumin Is Crucial for Pig Sperm to Elicit In Vitro Capacitation Whereas Bicarbonate Only Modulates Its Efficiency. Biology, 2021, 10, 1105.	1.3	6
132	The Boar Reproductive System. , 2013, , 65-107.		5
133	Energy substrate influences the effect of the timing of the first embryonic cleavage on the development of in vitroâ€produced porcine embryos in a sexâ€related manner. Molecular Reproduction and Development, 2013, 80, 924-935.	1.0	5
134	The Effects of Red Light on Mammalian Sperm Rely upon the Color of the Straw and the Medium Used. Animals, 2021, 11, 122.	1.0	4
135	Telomere length in bovine sperm is related to the production of reactive oxygen species, but not to reproductive performance. Theriogenology, 2022, 189, 290-300.	0.9	4
136	Effect of culture conditions on the obtention of boar epididymal epithelial cell monolayers. Animal Reproduction Science, 2006, 95, 262-272.	0.5	3
137	A PCR technique to detect enterotoxigenic and verotoxigenic Escherichia coli in boar semen samples. Research in Veterinary Science, 2012, 93, 31-33.	0.9	3
138	Sex determination of porcine embryos using a new developed duplex polymerase chain reaction procedure based on the amplification of repetitive sequences. Reproduction, Fertility and Development, 2013, 25, 417.	0.1	3
139	Cell proliferation in the seminiferous and epididymal epithelia of Sus domesticus. Theriogenology, 2014, 81, 702-711.	0.9	3
140	HVCN1 but Not Potassium Channels Are Related to Mammalian Sperm Cryotolerance. International Journal of Molecular Sciences, 2021, 22, 1646.	1.8	3
141	P-008. Lectin affinity of the lamina propria, peritubular cells and Sertoli cells in scrotal and abdominal testes of boars. Human Reproduction, 1999, 14, 143-143.	0.4	2
142	Detection of Clostridium perfringens in boar semen by PCR techniques. Livestock Science, 2013, 151, 292-294.	0.6	2
143	Testing an egg yolk supplemented diet on boars to aid in sperm adaptation at 5°C. Systems Biology in Reproductive Medicine, 2015, 61, 253-262.	1.0	2
144	Medium-term effects of the diluted pig semen irradiation with red LED light on the integrity of nucleoprotein structure and resilience to withstand thermal stress. Theriogenology, 2020, 157, 388-398.	0.9	2

#	Article	IF	CITATIONS
145	Origin, structure and function of the amebocytes of the male reproductive system in <i>Dina lineata</i> O.F. Müller (Hirudinea, Erpobdellidae). Invertebrate Reproduction and Development, 1991, 19, 87-95.	0.3	1
146	Valuable boar sperm parameters when searching for freezability traits. Theriogenology, 2008, 70, 1396.	0.9	1
147	Preservation of Epididymal Stallion Sperm in Liquid and Frozen States: Effects of Seminal Plasma on Sperm Function and Fertility. Journal of Equine Veterinary Science, 2020, 88, 102940.	0.4	1
148	60 THE EFFECT OF L-ASCORBIC ACID DURING CULTURE, CRYOPRESERVATION, OR BOTH ON PORCINE EMBRYOS PRODUCED IN VITRO. Reproduction, Fertility and Development, 2013, 25, 177.	0.1	1
149	P-002. Testicular structure in spontaneous unilateral and bilateral abdominal cryptorchidism. Human Reproduction, 1999, 14, 139-140.	0.4	0
150	Involvement of aquaporins in mammalian sperm cryopreservation. Cryobiology, 2018, 85, 126.	0.3	0
151	Relative GSTM3-abundance in fresh boar sperm is related to their cryotolerance. Theriogenology, 2019,	0.9	0