
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/484954/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	In-situ SEM cyclic nanoindentation of pre-sintered and sintered zirconia materials. Journal of the Mechanical Behavior of Biomedical Materials, 2022, 126, 105068.	1.5	4
2	Microgrinding of lithium metasilicate/disilicate glass-ceramics. Ceramics International, 2022, 48, 8548-8562.	2.3	2
3	Soft machining-induced surface and edge chipping damage in pre-crystalized lithium silicate glass ceramics. Journal of the Mechanical Behavior of Biomedical Materials, 2022, 131, 105224.	1.5	3
4	In-situ SEM micropillar compression of porous and dense zirconia materials. Journal of the Mechanical Behavior of Biomedical Materials, 2022, 132, 105268.	1.5	2
5	Influence of CAD/CAM milling, sintering and surface treatments on the fatigue behavior of lithium disilicate glass ceramic. Journal of the Mechanical Behavior of Biomedical Materials, 2021, 113, 104133.	1.5	7
6	Microstructural responses of Zirconia materials to in-situ SEM nanoindentation. Journal of the Mechanical Behavior of Biomedical Materials, 2021, 118, 104450.	1.5	9
7	Zirconia responses to edge chipping damage induced in conventional and ultrasonic vibration-assisted diamond machining. Journal of Materials Research and Technology, 2021, 13, 573-589.	2.6	17
8	Microstructural influence on damage-induced zirconia surface asperities produced by conventional and ultrasonic vibration-assisted diamond machining. Ceramics International, 2021, 47, 25744-25754.	2.3	10
9	Design against Fatigue of Super Duplex Stainless Steel Structures Fabricated by Wire Arc Additive Manufacturing Process. Metals, 2021, 11, 1965.	1.0	12
10	Machinability: Zirconia-reinforced lithium silicate glass ceramic versus lithium disilicate glass ceramic. Journal of the Mechanical Behavior of Biomedical Materials, 2020, 101, 103435.	1.5	37
11	Responses of pre-crystallized and crystallized zirconia-containing lithium silicate glass ceramics to diamond machining. Ceramics International, 2020, 46, 1924-1933.	2.3	16
12	Effect of bur selection on machining damage mechanisms of polymer-infiltrated ceramic network material for CAD/CAM dental restorations. Ceramics International, 2020, 46, 23116-23126.	2.3	4
13	Microâ€slurry jet for surface processing of dental ceramics. Biosurface and Biotribology, 2019, 5, 8-12.	0.6	7
14	Response of pre-crystallized CAD/CAM zirconia-reinforced lithium silicate glass ceramic to cyclic nanoindentation. Journal of the Mechanical Behavior of Biomedical Materials, 2019, 92, 58-70.	1.5	7
15	Fracture-free surfaces of CAD/CAM lithium metasilicate glass-ceramic using micro-slurry jet erosion. Journal of the Mechanical Behavior of Biomedical Materials, 2018, 80, 59-67.	1.5	13
16	Ultrasonic assisted high rotational speed diamond machining of dental glass ceramics. International Journal of Advanced Manufacturing Technology, 2018, 96, 387.	1.5	7
17	Relevance of SEM to Long-Term Mechanical Properties of Cemented Paste Backfill. Geotechnical and Geological Engineering, 2018, 36, 2171-2187.	0.8	22
18	Nano-scale mechanical behavior of pre-crystallized CAD/CAM zirconia-reinforced lithium silicate glass ceramic. Journal of the Mechanical Behavior of Biomedical Materials, 2018, 82, 35-44.	1.5	12

#	Article	IF	CITATIONS
19	Clinical Resurfacing of Feldspar and Leucite Glass Ceramics Using Dental Handpieces and Burs. Springer Series in Biomaterials Science and Engineering, 2017, , 163-194.	0.7	0
20	A Review of Engineered Zirconia Surfaces in Biomedical Applications. Procedia CIRP, 2017, 65, 284-290.	1.0	68
21	Fracture, roughness and phase transformation in CAD/CAM milling and subsequent surface treatments of lithium metasilicate/disilicate glass-ceramics. Journal of the Mechanical Behavior of Biomedical Materials, 2017, 74, 251-260.	1.5	37
22	Surface quality of yttria-stabilized tetragonal zirconia polycrystal in CAD/CAM milling, sintering, polishing and sandblasting processes. Journal of the Mechanical Behavior of Biomedical Materials, 2017, 65, 102-116.	1.5	81
23	Aesthetic Ceramics for Dental Restorations. Journal of the Society of Biomechanisms, 2017, 41, 137-142.	0.0	0
24	Fracture Damage: A Bottleneck in Glass Ceramic Machining. , 2017, , .		0
25	Wear behavior of pressable lithium disilicate glass ceramic. Journal of Biomedical Materials Research - Part B Applied Biomaterials, 2016, 104, 968-978.	1.6	46
26	Assessment of Elasticity, Plasticity and Resistance to Machining-induced Damage of Porous Pre-sintered Zirconia Using Nanoindentation Techniques. Journal of Materials Science and Technology, 2016, 32, 402-410.	5.6	39
27	Machinability of lithium disilicate glass ceramic in in vitro dental diamond bur adjusting process. Journal of the Mechanical Behavior of Biomedical Materials, 2016, 53, 78-92.	1.5	59
28	Nano-mechanical behaviour of lithium metasilicate glass–ceramic. Journal of the Mechanical Behavior of Biomedical Materials, 2015, 49, 162-174.	1.5	23
29	Nanoindentation characterization of the elasticity, plasticity and machinability of zirconia. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2015, 628, 181-187.	2.6	32
30	Effects of cementation surface modifications on fracture resistance of zirconia. Dental Materials, 2015, 31, 435-442.	1.6	32
31	Quantitative assessment of the enamel machinability in tooth preparation with dental diamond burs. Journal of the Mechanical Behavior of Biomedical Materials, 2015, 41, 1-12.	1.5	16
32	Ceramics in restorative dentistry. , 2014, , 711-740.		0
33	Loading rate effect on the mechanical behavior of zirconia in nanoindentation. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2014, 619, 247-255.	2.6	47
34	Determination of the mechanical behavior of lithium disilicate glass ceramics by nanoindentation & scanning probe microscopy. Materials Chemistry and Physics, 2014, 148, 1036-1044.	2.0	35
35	Nano-scale mechanical properties and behavior of pre-sintered zirconia. Journal of the Mechanical Behavior of Biomedical Materials, 2014, 36, 21-31.	1.5	36
36	Damage morphology produced in low-cycle high-load indentations of feldspar porcelain and leucite glass ceramic. Journal of Materials Science, 2013, 48, 7902-7912.	1.7	3

#	Article	IF	CITATIONS
37	Cutting characteristics of dental glass ceramics during in vitro dental abrasive adjusting using a high-speed electric handpiece. Ceramics International, 2013, 39, 6237-6249.	2.3	16
38	A Machining Science Approach to Dental Cutting of Glass Ceramics Using an Electric Handpiece and Diamond Burs. Journal of Manufacturing Science and Engineering, Transactions of the ASME, 2013, 135,	1.3	10
39	Nanoscale study of cartilage surfaces using atomic force microscopy. Proceedings of the Institution of Mechanical Engineers, Part H: Journal of Engineering in Medicine, 2012, 226, 899-910.	1.0	14
40	Property–process relations in simulated clinical abrasive adjusting of dental ceramics. Journal of the Mechanical Behavior of Biomedical Materials, 2012, 16, 55-65.	1.5	30
41	In Vitro Dental Cutting of Feldspar and Leucite Glass Ceramics Using an Electric Handpiece. , 2012, , .		0
42	Surface morphology and fracture in handpiece adjusting of a leucite-reinforced glass ceramic with coarse diamond burs. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2012, 534, 193-202.	2.6	22
43	2D and 3D mapping of microindentations in hydrated and dehydrated cortical bones using confocal laser scanning microscopy. Journal of Materials Science, 2012, 47, 4432-4438.	1.7	4
44	Microwave Modification of Sugar Cane to Enhance Juice Extraction During Milling. Journal of Microwave Power and Electromagnetic Energy, 2011, 45, 178-187.	0.4	10
45	Grindability of dental ceramics in the in vitro oral regime. International Journal of Abrasive Technology, 2011, 4, 204.	0.2	2
46	Polishing Using Flexible Abrasive Tools and Loose Abrasives. , 2011, , 345-384.		3
47	Induced damage zone in micro-fine dental finishing of a feldspathic porcelain. Medical Engineering and Physics, 2010, 32, 417-422.	0.8	12
48	Stress and damage at the bur-prosthesis interface in dental adjustments of a leucite-reinforced glass ceramic. Journal of Oral Rehabilitation, 2010, 37, 680-691.	1.3	14
49	Effect of Penetration Rate on Insertion Force in Trabecular Bone Biopsy. Materials Science Forum, 2010, 654-656, 2225-2228.	0.3	2
50	Nano-Hardness Testing of Wear Particles in Sheep Knee Joints. Materials Science Forum, 2010, 654-656, 2253-2256.	0.3	0
51	Influence of enzymatic maceration on the microstructure and microhardness of compact bone. Biomedical Materials (Bristol), 2010, 5, 015006.	1.7	3
52	Abrasive Technology in Ceramic Restorative Dentistry. Advanced Materials Research, 2009, 76-78, 363-366.	0.3	0
53	Effect of cryo-induced microcracks on microindentation of hydrated cortical bone tissue. Materials Characterization, 2009, 60, 783-791.	1.9	12
54	Effect of microstructure on micromechanical performance of dry cortical bone tissues. Materials Characterization, 2009, 60, 1424-1431.	1.9	8

#	Article	IF	CITATIONS
55	In-process assessment of dental cutting of a leucite-reinforced glass–ceramic. Medical Engineering and Physics, 2009, 31, 214-220.	0.8	17
56	Subsurface damage induced in dental resurfacing of a feldspar porcelain with coarse diamond burs. Journal of Biomechanics, 2009, 42, 355-360.	0.9	28
57	Micro-fine finishing of a feldspar porcelain for dental prostheses. Medical Engineering and Physics, 2008, 30, 856-864.	0.8	11
58	In vitro rapid intraoral adjustment of porcelain prostheses using a high-speed dental handpiece. Acta Biomaterialia, 2008, 4, 414-424.	4.1	30
59	Finite element analysis of subsurface damage of ceramic prostheses in simulated intraoral dental resurfacing. Journal of Biomedical Materials Research - Part B Applied Biomaterials, 2008, 85B, 50-59.	1.6	16
60	Brittle materials in nano-abrasive fabrication of optical mirror-surfaces. Precision Engineering, 2008, 32, 336-341.	1.8	45
61	Linear Grinding of Microbores Using Diamond-Adhered Wire. Materials and Manufacturing Processes, 2007, 22, 271-276.	2.7	6
62	Effect of diamond burs on process and damage involvingin vitrodental resurfacing of a restorative porcelain. Journal Physics D: Applied Physics, 2007, 40, 5291-5300.	1.3	12
63	Surface topography in mechanical polishing of 6H-SiC (0001) substrate. Proceedings of SPIE, 2007, , .	0.8	0
64	Grinding characteristics of engineering ceramics in high speed regime. International Journal of Abrasive Technology, 2007, 1, 78.	0.2	19
65	The feature-based posterior crown design in a dental CAD/CAM system. International Journal of Advanced Manufacturing Technology, 2007, 31, 1058-1065.	1.5	12
66	An experimental investigation of fabrication mechanisms of optic fibre end faces using nano/microindentation and nanogrinding. International Journal of Nanomanufacturing, 2006, 1, 47.	0.3	2
67	An overview of in vitro abrasive finishing & CAD/CAM of bioceramics in restorative dentistry. International Journal of Machine Tools and Manufacture, 2006, 46, 1013-1026.	6.2	88
68	Surface integrity and removal mechanism in simulated dental finishing of a feldspathic porcelain. Journal of Biomedical Materials Research - Part B Applied Biomaterials, 2006, 79B, 365-378.	1.6	38
69	Loose abrasive truing and dressing of resin bond diamond cup wheels for grinding fibre optic connectors. Journal of Materials Processing Technology, 2005, 159, 229-239.	3.1	22
70	High speed versus conventional grinding in high removal rate machining of alumina and alumina–titania. International Journal of Machine Tools and Manufacture, 2005, 45, 897-907.	6.2	68
71	Influences of nanoscale abrasive suspensions on the polishing of fiber-optic connectors. International Journal of Advanced Manufacturing Technology, 2005, 25, 685-690.	1.5	12
72	Planar nanogrinding of a fine grained WC-Co composite for an optical surface finish. International Journal of Advanced Manufacturing Technology, 2005, 26, 766-773.	1.5	18

#	Article	IF	CITATIONS
73	Abrasive Flow Polishing of Micro Bores. Materials and Manufacturing Processes, 2004, 19, 187-207.	2.7	50
74	Ceramic Response to High Speed Grinding. Machining Science and Technology, 2004, 8, 21-37.	1.4	71
75	Effects of Fluids on the Simulated Clinical-Dental Machining of a Glass Ceramic. Journal of the American Ceramic Society, 2004, 87, 173-175.	1.9	23
76	Microgrinding of deep micro grooves with high table reversal speed. International Journal of Machine Tools and Manufacture, 2004, 44, 39-49.	6.2	15
77	Influence of microstructure on ultraprecision grinding of cemented carbides. International Journal of Machine Tools and Manufacture, 2004, 44, 533-543.	6.2	89
78	Polishing of fiber optic connectors. International Journal of Machine Tools and Manufacture, 2004, 44, 659-668.	6.2	22
79	Surface characterization of 6H-SiC (0001) substrates in indentation and abrasive machining. International Journal of Machine Tools and Manufacture, 2004, 44, 607-615.	6.2	82
80	Micro/meso ultra precision grinding of fibre optic connectors. Precision Engineering, 2004, 28, 95-105.	1.8	23
81	High-quality grinding of polycrystalline silicon carbide spherical surfaces. Wear, 2004, 256, 197-207.	1.5	75
82	Analytical and experimental investigation of coolant velocity in high speed grinding. International Journal of Machine Tools and Manufacture, 2004, 44, 1069-1076.	6.2	56
83	Surface Waviness Controlled Grinding of Thin Mold Inserts Using Chilled Air as Coolant. Materials and Manufacturing Processes, 2004, 19, 341-354.	2.7	3
84	Abrasive machining of porcelain and zirconia with a dental handpiece. Wear, 2003, 255, 975-989.	1.5	109
85	High speed grinding of silicon nitride with resin bond diamond wheels. Journal of Materials Processing Technology, 2003, 141, 329-336.	3.1	95
86	High Speed Grinding Performance and Material Removal Mechanism of Silicon Nitride. , 2002, , 416-420.		6
87	ABRASIVE MACHINING OF GLASS-INFILTRATED ALUMINA WITH DIAMOND BURS. Machining Science and Technology, 2001, 5, 43-61.	1.4	46
88	ABRASIVE MACHINING OF GLASS-CERAMICS WITH A DENTAL HANDPIECE. Machining Science and Technology, 2000, 4, 209-233.	1.4	46
89	Surface Roughness and Stress Responses of a Feldspar Porcelain to Fatigue Impact. Key Engineering Materials, 0, 443, 557-561.	0.4	0
90	Forecasting of Cutting Forces in Dental Adjustment of Ceramic Prostheses Using an Artificial Neural Network. Advanced Materials Research, 0, 152-153, 1687-1690.	0.3	0

#	Article	IF	CITATIONS
91	FEA-Predicted Subsurface Damage in Micro Finishing of a Feldspar Porcelain Using Fine-Grit Dental Burs. Key Engineering Materials, 0, 443, 562-566.	0.4	0
92	Lubricated Wear of Machinable Lithium Disilicate Glass Ceramic. Key Engineering Materials, 0, 739, 18-22.	0.4	0
93	Influence of Grinding Fluids on the Abrasive Machining of a Micaceous Glass Ceramic. , 0, , 191-196.		2