Weidong Yan

List of Publications by Year in Descending Order

Source: https://exaly.com/author-pdf/4849450/weidong-yan-publications-by-year.pdf

Version: 2024-04-28

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

51	702	14	24
papers	citations	h-index	g-index
52 ext. papers	796 ext. citations	2.9 avg, IF	4.37 L-index

#	Paper	IF	Citations
51	Quantitative Polyunsaturated Fatty Acid Analysis of Chia Seed Oil by High-Performance Liquid Chromatographic Science, 2021 , 59, 120-127	1.4	3
50	Synthesis, Stability, and Antidiabetic Activity Evaluation of (-)-Epigallocatechin Gallate (EGCG) Palmitate Derived from Natural Tea Polyphenols. <i>Molecules</i> , 2021 , 26,	4.8	9
49	Authentication of the Bilberry Extracts by an HPLC Fingerprint Method Combining Reference Standard Extracts. <i>Molecules</i> , 2020 , 25,	4.8	7
48	Investigation of solidIlquid equilibrium of stevioside in different pure and binary mix solvents at various temperatures. <i>Canadian Journal of Chemistry</i> , 2019 , 97, 815-823	0.9	
47	Solubility Determination and Modeling of EGCG Peracetate in 12 Pure Solvents at Temperatures from 278.15 to 318.15 K. <i>Journal of Chemical & Engineering Data</i> , 2019 , 64, 5218-5224	2.8	12
46	Lipophilization of EGCG and effects on antioxidant activities. Food Chemistry, 2019, 272, 663-669	8.5	31
45	Solid[liquid Equilibrium of Rebaudioside A in Pure and Binary Mixed Solvents at T = (288.15 to 328.15) K. <i>Journal of Chemical & Engineering Data</i> , 2018 , 63, 4269-4276	2.8	3
44	Solubilities of 4?,5,7-Triacetoxyflavanone in Fourteen Organic Solvents at Different Temperatures. <i>Journal of Chemical & Different Temperatures</i> . <i>Journal of Chemical & Different Temperatures</i> .	2.8	4
43	Volumetric Properties, Viscosity, and Refractive Indices of Different Naringenin Solutions at Several Temperatures. <i>Journal of Chemical & Data, Engineering Data, 2017</i> , 62, 3229-3240	2.8	2
42	Measurement and Correlation of Solubility of Theobromine, Theophylline, and Caffeine in Water and Organic Solvents at Various Temperatures. <i>Journal of Chemical & Description (Content of Chemical Content of</i>	2.8	28
41	Simultaneous determination of chlorogenic acids in green coffee bean extracts with effective relative response factors. <i>International Journal of Food Properties</i> , 2017 , 20, 2028-2040	3	12
40	Solubilities of Three Flavonoids in Different Natural Deep Eutectic Solvents at T = (288.15 to 328.15) K. <i>Journal of Chemical & Engineering Data</i> , 2016 , 61, 4203-4208	2.8	18
39	Solubilities of Naringin Dihydrochalcone in Pure Solvents and Mixed Solvents at Different Temperatures. <i>Journal of Chemical & Engineering Data</i> , 2016 , 61, 4085-4089	2.8	8
38	Rh(III)-catalyzed double molecular alkyne imine CH activation: a facile and efficient synthesis of functionalized acridine compounds. <i>Tetrahedron Letters</i> , 2016 , 57, 2905-2909	2	5
37	A feasible scaling-up separation of platycosides from Platycodi Radix: From analytical to semi-preparative high performance liquid chromatography coupling with a post-separation flash freezing treatment to obtain highly unstable components. Separation and Purification Technology,	8.3	4
36	Volumetric Properties and Viscosity B-Coefficients for the Ternary Systems Epigallocatechin Gallate + MCl + H2O (M = Li, Na, K) at Temperatures 288.15B08.15 K. <i>Journal of Chemical & Engineering Data</i> , 2016 , 61, 1777-1792	2.8	1
35	Modified Method for Measuring the Solubility of Pharmaceutical Compounds in Organic Solvents by Visual Camera. <i>Journal of Chemical & Engineering Data</i> , 2016 , 61, 35-40	2.8	7

(2008-2015)

34	Structural stability of acetyl saponins in different solvents and separation materials. <i>Phytochemistry Letters</i> , 2015 , 11, 368-372	1.9	5
33	Thermodynamic properties of betulinic acid in THF+water mixed solvents at different temperatures. <i>Thermochimica Acta</i> , 2014 , 598, 1-6	2.9	4
32	Solubilities of Betulinic Acid in Thirteen Organic Solvents at Different Temperatures. <i>Journal of Chemical & Different Temperatures</i> . <i>Journal of Chemical & Different Temperatures</i> . <i>Journal of Chemical & Different Temperatures</i> .	2.8	51
31	Excess Molar Enthalpies of Methyl Acetoacetate + (Methanol, + Ethanol, + 1-Propanol, and + 2-Propanol) at T = (288.2, 298.2, 313.2, and 328.2) K and p = 101.3 kPa. <i>Journal of Chemical & Engineering Data</i> , 2011 , 56, 2739-2742	2.8	2
30	Solubilities of Phloretin in 12 Solvents at Different Temperatures. <i>Journal of Chemical & Engineering Data</i> , 2011 , 56, 1459-1462	2.8	8
29	Measurement and correlation of solubilities of apigenin and apigenin 7-O-rhamnosylglucoside in seven solvents at different temperatures. <i>Journal of Chemical Thermodynamics</i> , 2011 , 43, 240-243	2.9	66
28	Solubility of Luteolin in Ethanol + Water Mixed Solvents at Different Temperatures. <i>Journal of Chemical & Che</i>	2.8	23
27	Solubilities of Apigenin in Ethanol + Water at Different Temperatures. <i>Journal of Chemical & Engineering Data</i> , 2010 , 55, 3346-3348	2.8	12
26	Excess Molar Enthalpies of Diethyl Malonate + (Methanol, + Ethanol, + 1-Propanol, and + 2-Propanol) at T = (288.2, 298.2, 313.2, and 328.2) K and p = 101.3 kPa. <i>Journal of Chemical & Engineering Data</i> , 2010 , 55, 381-384	2.8	5
25	Excess Molar Volumes of 1,3-Diethyl Propanedioate with Methanol, Ethanol, Propan-1-ol, Propan-2-ol, Butan-2-ol, 2-Methyl-propan-1-ol, and Pentan-1-ol at T = (288.15, 298.15, 313.15, and 328.15) K. <i>Journal of Chemical & Engineering Data</i> , 2010 , 55, 4029-4032	2.8	7
24	Excess molar enthalpies of diethyl malonate+ (1-butanol, 2-methyl-1-propanol, 1-pentanol, n-heptane, and ethyl acetate) at T= (288.2, 298.2, 313.2, 328.2, 338.2, and 348.2K) and p=101.3kPa. <i>Fluid Phase Equilibria</i> , 2010 , 291, 8-12	2.5	14
23	Synthesis of Betulin-3-yl-ED-Glucopyranoside. <i>Journal of Carbohydrate Chemistry</i> , 2009 , 28, 234-243	1.7	6
22	Excess Molar Enthalpies of Five Binary Systems Containing Ethyl Acetoacetate at Different Temperatures. <i>Journal of Chemical & Engineering Data</i> , 2009 , 54, 1308-1310	2.8	3
21	Solubility of Rutin in Ethanol + Water at (273.15 to 323.15) K. <i>Journal of Chemical & Data</i> , 2009, 54, 1378-1381	2.8	18
20	Excess Enthalpies of 2,4-Pentanedione + (Methanol, + Ethanol, + 1-Propanol, and + 2-Propanol) at T = $(298.15, 313.15, and 328.15)$ K and p = $(0.1 and 10.0)$ MPa. Journal of Chemical & Engineering Data, 2008, 53, 194-198	2.8	5
19	Measurement and Correlation of Solubilities of trans-Resveratrol in Ethanol + Water and Acetone + Water Mixed Solvents at Different Temperatures. <i>Journal of Chemical & Different Data</i> , 2008 , 53, 2562-2566	2.8	21
18	Excess Molar Enthalpies of Acetophenone + (Methanol, + Ethanol, + 1-Propanol, and + 2-Propanol) at Different Temperatures and Pressures. <i>Journal of Chemical & Different Temperatures and Pressures</i> . <i>Journal of Chemical & Different Temperatures</i> and Pressures. <i>Journal of Chemical & Different Temperatures</i> .	55 ^{2.8}	11
17	Excess Molar Enthalpies of N,N-Dimethylethanolamine with (Methanol, Ethanol, 1-Propanol, and 2-Propanol) at $T = (298.2, 313.2, and 328.2)$ K and $p = (0.1 and 10.0)$ MPa. Journal of Chemical & Engineering Data, 2008, 53, 1927-1931	2.8	2

16	Determination and Correlation of Excess Molar Enthalpies of Eight Binary Systems Containing Acetophenone at Different Temperatures. <i>Journal of Chemical & Chemical &</i>	-1 2 34	10
15	Determination and correlation of molar excess enthalpies of binary systems 2,4-pentanedione + (1-butanol, + 2-methyl-1-propanol, + 1-pentanol, + 1-heptane, + ethyl acetate, and + water). <i>Fluid Phase Equilibria</i> , 2008 , 265, 37-45	2.5	9
14	Solubilities of betulin in chloroform+methanol mixed solvents at T=(278.2, 288.2, 293.2, 298.2, 308.2 and 313.2) K. <i>Fluid Phase Equilibria</i> , 2008 , 267, 79-82	2.5	14
13	Experimental Determination of Solubilities of Betulin in Acetone + Water and Ethanol + Water Mixed Solvents at T = (278.2, 288.2, 298.2, 308.2, and 318.2) K. <i>Journal of Chemical & Engineering Data</i> , 2007 , 52, 2365-2367	2.8	5
12	Enthalpies of dilution of formamide in aqueous alcohol solutions at 298.15 K. <i>Thermochimica Acta</i> , 2007 , 466, 35-37	2.9	6
11	Simultaneous determination of betulin and betulinic acid in white birch bark using RP-HPLC. <i>Journal of Pharmaceutical and Biomedical Analysis</i> , 2007 , 43, 959-62	3.5	94
10	Solubilities of Betulin in Fourteen Organic Solvents at Different Temperatures. <i>Journal of Chemical & Engineering Data</i> , 2007 , 52, 1366-1368	2.8	31
9	Measurement and Correlation of Solubilities of Luteolin in Organic Solvents at Different Temperatures. <i>Journal of Chemical & Engineering Data</i> , 2006 , 51, 2038-2040	2.8	20
8	Excess Molar Enthalpies of Methyl Acetate and (1-Propanol, 2-Propanol, 1-Butanol, 2-Butanol, and 1-Pentanol) at T = (298.15 and 308.15) K and P = (5.0 and 10.0) MPa. <i>Journal of Chemical & Engineering Data</i> , 2005 , 50, 1907-1910	2.8	2
7	Excess Molar Enthalpies of Dimethyl Carbonate and (Methanol, Ethanol, 1-Propanol, and 2-Propanol) atT= (298.15, 313.15, and 328.15) K andp= (0.1, 1.0, and 10.0) MPa. <i>Journal of Chemical & Mamp; Engineering Data</i> , 2005 , 50, 1087-1090	2.8	13
6	Molar excess enthalpies of ethyl acetate+alkanols at T=298.15K, p=10.0MPa. <i>Thermochimica Acta</i> , 2005 , 429, 155-161	2.9	29
5	Solubility and density of the disodium salt hemiheptahydrate of ceftriaxone in (acetone + water) at T=(298.15,308.15,and318.15) K. <i>Journal of Chemical Thermodynamics</i> , 2004 , 36, 155-159	2.9	12
4	Thermodynamic Properties of the Ternary System Potassium Bromide + Lithium Bromide + Water at 25 °C. <i>Journal of Solution Chemistry</i> , 2001 , 30, 193-200	1.8	7
3	Measurement and Correlation of Isobaric Vaporlliquid Equilibrium Data for the System Acetone + Methanol + Zinc Chloride. <i>Journal of Chemical & Data, 1999</i> , 44, 314-318	2.8	15
2	Isothermal Vaporliquid Equilibrium Data for the Acetone + Methanol + Lithium Nitrate System. <i>Journal of Chemical & Data,</i> 1998 , 43, 482-485	2.8	6
1	Measurement and Correlation of Isothermal Vaporliquid Equilibrium Data for the System Acetone + Methanol + Lithium Bromide. <i>Journal of Chemical & Data</i> , 1998, 43, 585-589	2.8	12