Long Zhang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4849298/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Dynamical analysis of a fractional-order predator-prey model incorporating a prey refuge. Journal of Applied Mathematics and Computing, 2017, 54, 435-449.	1.2	221
2	Stability and bifurcation analysis of a discrete predator–prey model with nonmonotonic functional response. Nonlinear Analysis: Real World Applications, 2011, 12, 2356-2377.	0.9	112
3	Stability and bifurcation analysis in a discrete SIR epidemic model. Mathematics and Computers in Simulation, 2014, 97, 80-93.	2.4	61
4	Global Mittag–Leffler stability of coupled system of fractional-order differential equations on network. Applied Mathematics and Computation, 2015, 270, 269-277.	1.4	55
5	Global synchronization between two fractional-order complex networks with non-delayed and delayed coupling via hybrid impulsive control. Neurocomputing, 2019, 356, 31-39.	3.5	43
6	Existence and Global Exponential Stability of Almost Periodic Solution for Cellular Neural Networks With Variable Coefficients and Time-Varying Delays. IEEE Transactions on Neural Networks, 2005, 16, 1340-1351.	4.8	41
7	Complete and finite-time synchronization of fractional-order fuzzy neural networks via nonlinear feedback control. Fuzzy Sets and Systems, 2022, 443, 50-69.	1.6	40
8	Global dynamics in a reaction–diffusion multi-group SIR epidemic model with nonlinear incidence. Nonlinear Analysis: Real World Applications, 2019, 50, 365-385.	0.9	38
9	Persistence and extinction of disease in non-autonomous SIRS epidemic models with disease-induced mortality. Nonlinear Analysis: Theory, Methods & Applications, 2008, 69, 2599-2614.	0.6	34
10	Global Mittag-Leffler synchronization of fractional-order delayed quaternion-valued neural networks: Direct quaternion approach. Applied Mathematics and Computation, 2020, 373, 125020.	1.4	33
11	Finite-time stabilization of fractional-order fuzzy quaternion-valued BAM neural networks via direct quaternion approach. Journal of the Franklin Institute, 2021, 358, 7650-7673.	1.9	28
12	-species non-autonomous Lotka–Volterra competitive systems with delays and impulsive perturbations. Nonlinear Analysis: Real World Applications, 2011, 12, 3152-3169.	0.9	27
13	Global Mittag–Leffler stability for a coupled system of fractional-order differential equations on network with feedback controls. Neurocomputing, 2016, 214, 233-241.	3.5	25
14	Non-separation method-based robust finite-time synchronization of uncertain fractional-order quaternion-valued neural networks. Applied Mathematics and Computation, 2021, 409, 126377.	1.4	25
15	Permanence for a delayed periodic predator–prey model with prey dispersal in multi-patches and predator density-independent. Journal of Mathematical Analysis and Applications, 2008, 338, 175-193.	0.5	24
16	Parameter identification and adaptive–impulsive synchronization of uncertain complex networks with nonidentical topological structures. Optik, 2015, 126, 5771-5776.	1.4	23
17	Stability analysis of a fractional-order predator–prey model incorporating a constant prey refuge and feedback control. Advances in Difference Equations, 2018, 2018, .	3.5	16
18	Survival analysis for a periodic predator–prey model with prey impulsively unilateral diffusion in two patches. Applied Mathematical Modelling, 2011, 35, 4243-4256.	2.2	14

#	Article	IF	CITATIONS
19	Dynamical analysis and chaos control of a discrete SIS epidemic model. Advances in Difference Equations, 2014, 2014, .	3.5	14
20	TWO PATCHES IMPULSIVE DIFFUSION PERIODIC SINGLE-SPECIES LOGISTIC MODEL. International Journal of Biomathematics, 2010, 03, 127-141.	1.5	13
21	Complex dynamical behaviors in a discrete eco-epidemiological model with disease in prey. Advances in Difference Equations, 2014, 2014, .	3.5	13
22	Quasi-Synchronization and Complete Synchronization of Fractional-Order Fuzzy BAM Neural Networks Via Nonlinear Control. Neural Processing Letters, 2022, 54, 3303-3319.	2.0	13
23	PERMANENCE IN GENERAL NON-AUTONOMOUS LOTKA–VOLTERRA PREDATOR–PREY SYSTEMS WITH DISTRIBUTED DELAYS AND IMPULSES. Journal of Biological Systems, 2013, 21, 1350012.	0.5	12
24	The dynamical behavior of a predator–prey system with Gompertz growth function and impulsive dispersal of prey between two patches. Mathematical Methods in the Applied Sciences, 2016, 39, 3623-3639.	1.2	12
25	Permanence for a class of periodic time-dependent competitive system with delays and dispersal in a patchy-environment. Applied Mathematics and Computation, 2007, 188, 855-864.	1.4	11
26	Boundedness and permanence in a class of periodic time-dependent predator–prey system with prey dispersal and predator density-independence. Chaos, Solitons and Fractals, 2008, 36, 729-739.	2.5	11
27	Permanence for General Nonautonomous Impulsive Population Systems of Functional Differential Equations and Its Applications. Acta Applicandae Mathematicae, 2010, 110, 1169-1197.	0.5	11
28	Anti‧ynchronization and Intermittent Anti‧ynchronization of Two Identical Delay Hyperchaotic Chua Systems Via Linear Control. Asian Journal of Control, 2017, 19, 202-214.	1.9	11
29	Global stability for a delayed HIV reactivation model with latent infection and Beddington–DeAngelis incidence. Applied Mathematics Letters, 2021, 117, 107047.	1.5	11
30	A parasitism–mutualism–predation model consisting of crows, cuckoos and cats with stage-structure and maturation delays on crows and cuckoos. Journal of Theoretical Biology, 2018, 446, 212-228.	0.8	10
31	Analysis of a general multi-group reaction–diffusion epidemic model with nonlinear incidence and temporary acquired immunity. Mathematics and Computers in Simulation, 2021, 182, 428-455.	2.4	10
32	Permanence for Nonautonomous \$N\$-Species Lotka-Volterra Competitive Systems with Feedback Controls. Rocky Mountain Journal of Mathematics, 2008, 38, .	0.2	9
33	Single species models with logistic growth and dissymmetric impulse dispersal. Mathematical Biosciences, 2013, 241, 188-197.	0.9	9
34	Permanence and global attractivity of an impulsive ratio-dependent predator–prey system in a patchy environment. Applied Mathematics and Computation, 2013, 219, 9791-9804.	1.4	8
35	Wave propagation in a nonlocal dispersal SIR epidemic model with nonlinear incidence and nonlocal distributed delays. Journal of Mathematical Physics, 2020, 61, 061512.	0.5	6
36	Global dynamics of a nonautonomous SEIRS epidemic model with vaccination and nonlinear incidence. Mathematical Methods in the Applied Sciences, 2021, 44, 9315-9333.	1.2	6

#	Article	IF	CITATIONS
37	Stability and bifurcation for a stochastic differential algebraic Holling-II predator–prey model with nonlinear harvesting and delay. International Journal of Biomathematics, 2021, 14, 2150019.	1.5	6
38	Quasiâ€projective and finiteâ€ŧime synchronization of delayed fractionalâ€order BAM neural networks via quantized control. Mathematical Methods in the Applied Sciences, 2023, 46, 197-214.	1.2	6
39	PERMANENCE IN A PERIODIC PREDATOR–PREY SYSTEM WITH PREY DISPERSAL AND PREDATOR DENSITY-INDEPENDENT. Journal of Biological Systems, 2006, 14, 491-507.	0.5	5
40	A hybrid predator–prey model with general functional responses under seasonal succession alternating between Gompertz and logistic growth. Advances in Difference Equations, 2020, 2020, .	3.5	5
41	Global stability for a nonautonomous reaction-diffusion predator-prey model with modified Leslie–Gower Holling-II schemes and a prey refuge. Advances in Difference Equations, 2020, 2020, .	3.5	5
42	Dynamics in a reaction-diffusion epidemic model via environmental driven infection in heterogenous space. Journal of Biological Dynamics, 2022, 16, 373-396.	0.8	4
43	Global dynamics for a drug-sensitive and drug-resistant mixed strains of HIV infection model with saturated incidence and distributed delays. Applied Mathematics and Computation, 2021, 406, 126284.	1.4	4
44	Stability and Hopf Bifurcation of a Stage-Structured Cannibalism Model with Two Delays. International Journal of Bifurcation and Chaos in Applied Sciences and Engineering, 2021, 31, .	0.7	4
45	Permanence for a class of periodic time-dependent predator–prey system with dispersal in a patchy-environmentâ~†. Chaos, Solitons and Fractals, 2008, 38, 1483-1497.	2.5	3
46	Global Behaviors of a Class of Discrete SIRS Epidemic Models with Nonlinear Incidence Rate. Abstract and Applied Analysis, 2014, 2014, 1-18.	0.3	3
47	A periodic single species model with intermittent unilateral diffusion in two patches. Journal of Applied Mathematics and Computing, 2017, 53, 223-244.	1.2	3
48	Intermittent dispersal population model with almost period parameters and dispersal delays. Discrete and Continuous Dynamical Systems - Series B, 2016, 21, 2011-2037.	0.5	3
49	Global stability for a class of HIV virus-to-cell dynamical model with Beddington-DeAngelis functional response and distributed time delay. Mathematical Biosciences and Engineering, 2020, 17, 4527-4543.	1.0	3
50	Dynamic Behaviors of Holling Type II Predator-Prey System with Mutual Interference and Impulses. Discrete Dynamics in Nature and Society, 2014, 2014, 1-13.	0.5	2
51	Global Stability for a Three-Species Food Chain Model in a Patchy Environment. Journal of Applied Mathematics, 2014, 2014, 1-5.	0.4	2
52	Single-species model under seasonal succession alternating between Gompertz and Logistic growth and impulsive perturbations. GEM - International Journal on Geomathematics, 2017, 8, 241-260.	0.7	2
53	A REACTION-DIFFUSION MODEL FOR NESTED WITHIN-HOST AND BETWEEN-HOST DYNAMICS IN AN ENVIRONMENTALLY-DRIVEN INFECTIOUS DISEASE. Journal of Applied Analysis and Computation, 2021, 11, 1898-1926.	0.2	2
54	A delayed predator–prey system with impulsive diffusion between two patches. International Journal of Biomathematics, 2017, 10, 1750010.	1.5	1

#	Article	IF	CITATIONS
55	Dynamics in a disease transmission model coupled virus infection in host with incubation delay and environmental effects. Journal of Applied Mathematics and Computing, 2022, 68, 4331-4359.	1.2	1
56	Spatial dynamics for an SIRE epidemic model with diffusion and prevention in contaminated environments. Studies in Applied Mathematics, 0, , .	1.1	1
57	Analysis of a Single Species Model with Dissymmetric Bidirectional Impulsive Diffusion and Dispersal Delay. Journal of Applied Mathematics, 2014, 2014, 1-11.	0.4	0
58	Coexistence for an Almost Periodic Predator-Prey Model with Intermittent Predation Driven by Discontinuous Prey Dispersal. Discrete Dynamics in Nature and Society, 2017, 2017, 1-15.	0.5	0