List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4849223/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Szegő polynomials from hypergeometric functions. Proceedings of the American Mathematical Society, 2010, 138, 4259-4270.	0.8	29
2	Another quadrature rule of highest algebraic degree of precision. Numerische Mathematik, 1994, 68, 283-294.	1.9	28
3	Orthogonal polynomials on the unit circle and chain sequences. Journal of Approximation Theory, 2013, 173, 14-32.	0.8	28
4	Zeros of a family of hypergeometric paraâ€orthogonal polynomials on the unit circle. Mathematische Nachrichten, 2013, 286, 1778-1791.	0.8	26
5	Chain sequences and symmetric generalized orthogonal polynomials. Journal of Computational and Applied Mathematics, 2002, 143, 95-106.	2.0	23
6	A Favard type theorem for orthogonal polynomials on the unit circle from a three term recurrence formula. Journal of Approximation Theory, 2014, 184, 146-162.	0.8	21
7	Some Consequences of a Symmetry in Strong Distributions. Journal of Mathematical Analysis and Applications, 1995, 193, 158-168.	1.0	19
8	Companion orthogonal polynomials: some applications. Applied Numerical Mathematics, 2001, 39, 127-149.	2.1	18
9	Symmetric Orthogonal Polynomials and the Associated Orthogonal L-Polynomials. Proceedings of the American Mathematical Society, 1995, 123, 3135.	0.8	17
10	On the extensions of some classical distributions. Proceedings of the Edinburgh Mathematical Society, 1991, 34, 19-29.	0.3	15
11	Real orthogonal polynomials in frequency analysis. Mathematics of Computation, 2004, 74, 341-363.	2.1	15
12	Blumenthal's Theorem for Laurent Orthogonal Polynomials. Journal of Approximation Theory, 2002, 117, 255-278.	0.8	14
13	Orthogonal Polynomials Associated with Related Measures and Sobolev Orthogonal Polynomials. Numerical Algorithms, 2003, 34, 203-216.	1.9	14
14	Symmetric orthogonal polynomials and the associated orthogonal ?-polynomials. Proceedings of the American Mathematical Society, 1995, 123, 3135-3141.	0.8	13
15	Polynomials generated by a three term recurrence relation: bounds for complex zeros. Linear Algebra and Its Applications, 2005, 397, 299-324.	0.9	13
16	On a symmetry in strong distributions. Journal of Computational and Applied Mathematics, 1999, 105, 187-198.	2.0	11
17	Basic hypergeometric functions and orthogonal Laurent polynomials. Proceedings of the American Mathematical Society, 2012, 140, 2075-2089.	0.8	11
18	A class of orthogonal functions given by a three term recurrence formula. Mathematics of Computation, 2015, 85, 1837-1859.	2.1	11

#	Article	IF	CITATIONS
19	On a Recurrence Formula Associated with Strong Distributions. SIAM Journal on Mathematical Analysis, 1990, 21, 1335-1348.	1.9	10
20	Para-orthogonal polynomials on the unit circle satisfying three term recurrence formulas. Applied Numerical Mathematics, 2016, 109, 19-40.	2.1	10
21	R type recurrence, generalized eigenvalue problem and orthogonal polynomials on the unit circle. Linear Algebra and Its Applications, 2019, 562, 63-90.	0.9	10
22	A class of hypergeometric polynomials with zeros on the unit circle: Extremal and orthogonal properties and quadrature formulas. Applied Numerical Mathematics, 2013, 65, 41-52.	2.1	9
23	Szegő polynomials: some relations to L-orthogonal and orthogonal polynomials. Journal of Computational and Applied Mathematics, 2003, 153, 79-88.	2.0	8
24	Associated symmetric quadrature rules. Applied Numerical Mathematics, 1996, 21, 175-183.	2.1	7
25	Companion orthogonal polynomials. Journal of Computational and Applied Mathematics, 1996, 75, 23-33.	2.0	7
26	Orthogonal polynomials with respect to a family of Sobolev inner products on the unit circle. Proceedings of the American Mathematical Society, 2016, 144, 1129-1143.	0.8	7
27	Sobolev Orthogonal Polynomials on the Unit Circle and Coherent Pairs of Measures of the Second Kind. Results in Mathematics, 2017, 71, 1127-1149.	0.8	7
28	Extreme zeros in a sequence of para-orthogonal polynomials and bounds for the support of the measure. Mathematics of Computation, 2017, 87, 261-288.	2.1	7
29	Zeros of Gegenbauer-Sobolev Orthogonal Polynomials: Beyond Coherent Pairs. Acta Applicandae Mathematicae, 2009, 105, 65-82.	1.0	6
30	Monotonicity of zeros of orthogonal Laurent polynomials. Methods and Applications of Analysis, 2002, 9, 1-12.	0.5	6
31	On the denominator values and barycentric weights of rational interpolants. Journal of Computational and Applied Mathematics, 2007, 200, 576-590.	2.0	5
32	Asymptotics for Gegenbauer–Sobolev orthogonal polynomials associated with non-coherent pairs of measures. Asymptotic Analysis, 2008, 60, 1-14.	0.5	5
33	Szegő type polynomials and para-orthogonal polynomials. Journal of Mathematical Analysis and Applications, 2010, 370, 30-41.	1.0	5
34	Complementary Romanovski-Routh polynomials: From orthogonal polynomials on the unit circle to Coulomb wave functions. Proceedings of the American Mathematical Society, 2019, 147, 2625-2640.	0.8	5
35	Explicit formulas for OPUC and POPUC associated with measures which are simple modifications of the Lebesgue measure. Applied Mathematics and Computation, 2015, 271, 820-831.	2.2	4
36	Ä-fractions and strong moment problems. Lecture Notes in Mathematics, 1986, , 269-284.	0.2	3

#	Article	IF	CITATIONS
37	The strong c-Symmetric distribution. Journal of the Australian Mathematical Society Series A Pure Mathematics and Statistics, 1992, 53, 261-265.	0.3	3
38	A Chebyshev-type quadrature rule with some interesting properties. Journal of Computational and Applied Mathematics, 1994, 51, 263-265.	2.0	3
39	Characterization of Generalized Bessel Polynomials in Terms of Polynomial Inequalities. Journal of Mathematical Analysis and Applications, 1998, 221, 538-543.	1.0	3
40	Christoffel formula for kernel polynomials on the unit circle. Journal of Approximation Theory, 2018, 235, 46-73.	0.8	3
41	Quadrature rules from a RII type recurrence relation and associated quadrature rules on the unit circle. Numerical Algorithms, 2020, 83, 1029-1061.	1.9	3
42	A class of Sobolev orthogonal polynomials on the unit circle and associated continuous dual Hahn polynomials: Bounds, asymptotics and zeros. Journal of Approximation Theory, 2021, 268, 105604.	0.8	3
43	Convergence properties of a class of Ä´-fractions. Journal of Computational and Applied Mathematics, 1987, 19, 331-342.	2.0	2
44	The Q-D algorithm for transforming series expansions into a corresponding continued fraction: an extension to cope with zero coefficients. Journal of Computational and Applied Mathematics, 2003, 156, 487-497.	2.0	2
45	Szegö Polynomials: Quadrature Rules on the Unit Circle and on \$[-1,1]\$. Rocky Mountain Journal of Mathematics, 2003, 33, 567.	0.4	2
46	Another connection between orthogonal polynomials and L-orthogonal polynomials. Journal of Mathematical Analysis and Applications, 2007, 330, 114-132.	1.0	2
47	On a moment problem associated with Chebyshev polynomials. Applied Mathematics and Computation, 2012, 218, 9571-9574.	2.2	2
48	Basic hypergeometric polynomials with zeros on the unit circle. Applied Mathematics and Computation, 2013, 225, 622-630.	2.2	2
49	Sieved para-orthogonal polynomials on the unit circle. Applied Mathematics and Computation, 2014, 244, 335-343.	2.2	2
50	Para-orthogonal polynomials from constant Verblunsky coefficients. Journal of Mathematical Analysis and Applications, 2015, 426, 1040-1060.	1.0	2
51	Orthogonal polynomials on the unit circle: Verblunsky coefficients with some restrictions imposed on a pair of related real sequences. Computational and Applied Mathematics, 2018, 37, 1142-1161.	1.3	2
52	Extended Relativistic Toda Lattice, L-Orthogonal Polynomials and Associated Lax Pair. Acta Applicandae Mathematicae, 2019, 164, 137-154.	1.0	2
53	Complementary Romanovski–Routh Polynomials, Orthogonal Polynomials on the Unit Circle, and Extended Coulomb Wave Functions. Results in Mathematics, 2020, 75, 1.	0.8	2
54	Asymptotics for polynomials satisfying a certain twin asymptotic periodic recurrence relation. Methods and Applications of Analysis, 1999, 6, 535-548.	0.5	2

#	Article	IF	CITATIONS
55	Inversely Symmetric Interpolatory Quadrature Rules. Acta Applicandae Mathematicae, 2000, 61, 15-28.	1.0	1
56	On linear combinations of L-orthogonal polynomials associated with distributions belonging to symmetric classes. Journal of Computational and Applied Mathematics, 2005, 179, 15-29.	2.0	1
57	Szegő polynomials and the truncated trigonometric moment problem. Ramanujan Journal, 2006, 12, 461-472.	0.7	1
58	Kernel polynomials from L-orthogonal polynomials. Applied Numerical Mathematics, 2011, 61, 651-665.	2.1	1
59	Orthogonal polynomials on the unit circle satisfying a second-order differential equation with varying polynomial coefficients. Integral Transforms and Special Functions, 2017, 28, 39-55.	1.2	1
60	On an Energy-Dependent Quantum System with Solutions in Terms of a Class of Hypergeometric Para-Orthogonal Polynomials on the Unit Circle. Mathematics, 2020, 8, 1161.	2.2	1
61	A modified least squares method: Approximations on the unit circle and on (â^'1,1). Journal of Computational and Applied Mathematics, 2022, 410, 114168.	2.0	1
62	Gaussian Quadrature Rules with Simple Node-Weight Relations. Numerical Algorithms, 2001, 27, 61-76.	1.9	0
63	Monotonicity of the zeros of orthogonal polynomials through related measures. Journal of Mathematical Analysis and Applications, 2005, 307, 699-709.	1.0	0
64	Modified Chebyshev algorithm: some applications. Numerical Algorithms, 2006, 43, 215-233.	1.9	0
65	L-orthogonal polynomials associated with related measures. Applied Numerical Mathematics, 2010, 60, 1041-1052.	2.1	Ο
66	A Characterization of L-orthogonal Polynomials fromÂThree Term Recurrence Relations. Acta Applicandae Mathematicae, 2011, 113, 1-16.	1.0	0
67	Generating Birth and Death Processes. Stochastic Analysis and Applications, 2011, 29, 185-196.	1.5	Ο
68	Szegő and para-orthogonal polynomials on the real line: Zeros and canonical spectral transformations. Mathematics of Computation, 2012, 81, 2229-2249.	2.1	0
69	Verblunsky coefficients related with periodic real sequences and associated measures on the unit circle. Journal of Mathematical Analysis and Applications, 2017, 445, 719-745.	1.0	Ο
70	Asymptotics for Polynomials Satisfying a Certain Twin Asymptotic Periodic Recurrence Relation: Unbounded Cases. Methods and Applications of Analysis, 2007, 14, 29-44.	0.5	0
71	Orthogonal Polynomials Associated with Complementary Chain Sequences. Symmetry, Integrability and Geometry: Methods and Applications (SIGMA), 0, , .	0.5	0