
Sanjeev Kumar Mahto

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4849084/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Pharmacokinetics, biodistribution, in vitro cytotoxicity and biocompatibility of Vitamin E TPGS coated trans resveratrol liposomes. Colloids and Surfaces B: Biointerfaces, 2016, 145, 479-491.	5.0	96
2	Intravenous administration of trans-resveratrol-loaded TPGS-coated solid lipid nanoparticles for prolonged systemic circulation, passive brain targeting and improved in vitro cytotoxicity against C6 glioma cell lines. RSC Advances, 2016, 6, 50336-50348.	3.6	72
3	A new perspective on <i>in vitro</i> assessment method for evaluating quantum dot toxicity by using microfluidics technology. Biomicrofluidics, 2010, 4, .	2.4	64
4	Assessment of cytocompatibility of surface-modified CdSe/ZnSe quantum dots for BALB/3T3 fibroblast cells. Toxicology in Vitro, 2010, 24, 1070-1077.	2.4	58
5	Soy protein isolate supplemented silk fibroin nanofibers for skin tissue regeneration: Fabrication and characterization. International Journal of Biological Macromolecules, 2020, 160, 112-127.	7.5	52
6	Microfluidic platforms for advanced risk assessments of nanomaterials. Nanotoxicology, 2015, 9, 381-395.	3.0	47
7	Freeze–Thaw-Induced Physically Cross-linked Superabsorbent Polyvinyl Alcohol/Soy Protein Isolate Hydrogels for Skin Wound Dressing: In Vitro and In Vivo Characterization. ACS Applied Materials & Interfaces, 2022, 14, 14033-14048.	8.0	33
8	In vitro biocompatibility analysis of functionalized poly(vinyl chloride)/layered double hydroxide nanocomposites. RSC Advances, 2018, 8, 40611-40620.	3.6	32
9	Easy and affordable method for rapid prototyping of tissue models in vitro using three-dimensional bioprinting. Biocybernetics and Biomedical Engineering, 2018, 38, 158-169.	5.9	31
10	Culturing melanocytes and fibroblasts within three-dimensional macroporous PDMS scaffolds: towards skin dressing material. Cytotechnology, 2019, 71, 287-303.	1.6	29
11	Microfluidic shear stress-regulated surfactant secretion in alveolar epithelial type II cells in vitro. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2014, 306, L672-L683.	2.9	26
12	Chemical modification of poly(vinyl chloride) for blood and cellular biocompatibility. RSC Advances, 2015, 5, 45231-45238.	3.6	25
13	Multicompartmented microfluidic device for characterization of dose-dependent cadmium cytotoxicity in BALB/3T3 fibroblast cells. Biomedical Microdevices, 2009, 11, 401-411.	2.8	23
14	Cytotoxic effects of surface-modified quantum dots on neuron-like PC12 cells cultured inside microfluidic devices. Biochip Journal, 2010, 4, 82-88.	4.9	23
15	Fabrication and Cytocompatibility Evaluation of Psyllium Husk (Isabgol)/Gelatin Composite Scaffolds. Applied Biochemistry and Biotechnology, 2019, 188, 750-768.	2.9	20
16	in vitromodels, endpoints and assessment methods for the measurement of cytotoxicity. Toxicology and Environmental Health Sciences, 2010, 2, 87-93.	2.1	18
17	Silica Release from Silane Cross-Linked Gelatin Based Hybrid Scaffold Affects Cell Proliferation. ACS Applied Bio Materials, 2020, 3, 197-207.	4.6	16
18	Respiratory Physiology on a Chip. Scientifica, 2012, 2012, 1-12.	1.7	15

Sanjeev Kumar Mahto

#	Article	IF	CITATIONS
19	Cell proliferation influenced by matrix compliance of gelatin grafted poly(d,l-Lactide) three dimensional scaffolds. Colloids and Surfaces B: Biointerfaces, 2018, 166, 170-178.	5.0	15
20	Recent developments of biomaterial scaffolds and regenerative approaches for craniomaxillofacial bone tissue engineering. Journal of Polymer Research, 2022, 29, 1.	2.4	15
21	Changes in electrolyte concentrations alter the impedance during ischemia-reperfusion injury in rat brain. Physiological Measurement, 2019, 40, 105004.	2.1	14
22	Fabrication and Characterization of Silk Fibroin-Based Nanofibrous Scaffolds Supplemented with Gelatin for Corneal Tissue Engineering. Cells Tissues Organs, 2021, 210, 173-194.	2.3	14
23	Tailored Chemical Properties of 4-Arm Star Shaped Poly(<scp>d</scp> , <scp>l</scp> -lactide) as Cell Adhesive Three-Dimensional Scaffolds. Bioconjugate Chemistry, 2017, 28, 1236-1250.	3.6	13
24	Combined substrate micropatterning and FFT analysis reveals myotube size control and alignment by contact guidance. Cytoskeleton, 2019, 76, 269-285.	2.0	12
25	Exposure of BALB/3T3 fibroblast cells to temporal concentration profile of toxicant inside microfluidic device. Biochip Journal, 2011, 5, 214-219.	4.9	11
26	Microfluidic Chip for Siteâ€Specific Neuropharmacological Treatment and Activity Probing of 3D Neuronal "Optonet―Cultures. Advanced Healthcare Materials, 2015, 4, 1478-1483.	7.6	11
27	Comparative behaviour of electrospun nanofibers fabricated from acid and alkaline hydrolysed gelatin: towards corneal tissue engineering. Journal of Polymer Research, 2020, 27, 1.	2.4	9
28	A portable standalone wireless electric cell-substrate impedance sensing (ECIS) system for assessing dynamic behavior of mammalian cells. Journal of Analytical Science and Technology, 2020, 11, .	2.1	9
29	Cytotoxic Potentials of Tellurium Nanowires in BALB/3T3 Fibroblast Cells. Bulletin of the Korean Chemical Society, 2011, 32, 3405-3410.	1.9	7
30	Synthesis and evaluation of cytotoxic effects of hanultarin and its derivatives. Bioorganic and Medicinal Chemistry Letters, 2011, 21, 6245-6248.	2.2	6
31	Optimizing a detection method for estimating polyunsaturated fatty acid in human milk based on colorimetric sensors. Materials Science for Energy Technologies, 2019, 2, 624-628.	1.8	6
32	Fabrication of MSM-Based Biosensing Device for Assessing Dynamic Behavior of Adherent Mammalian Cells. IEEE Sensors Journal, 2020, 20, 9652-9659.	4.7	6
33	High-manganese and nitrogen stabilized austenitic stainless steel (Fe–18Cr–22Mn–0.65N): a material with a bright future for orthopedic implant devices. Biomedical Materials (Bristol), 2021, 16, 065011.	3.3	6
34	Converting CO ₂ into heterocyclic compounds under accelerated performance through Fe ₃ O ₄ -grafted ionic liquid catalysts. New Journal of Chemistry, 2022, 46, 2887-2897.	2.8	6
35	Real-Time Optical pH Sensor With CMOS Contact Imaging and Microfluidics. IEEE Sensors Journal, 2016, 16, 3611-3619.	4.7	5
36	Printability assessment of psyllium husk (isabgol)/gelatin blends using rheological and mechanical properties. Journal of Biomaterials Applications, 2021, 35, 1132-1142.	2.4	5

SANJEEV KUMAR MAHTO

#	Article	IF	CITATIONS
37	Development of optically sensitive liver cells. Tissue and Cell, 2018, 52, 129-134.	2.2	4
38	Functional Behavior of the Primary Cortical Neuronal Cells on the Large Surface of TiOâ,, and SnOâ,, Based Biosensing Device. IEEE Transactions on Nanobioscience, 2021, 20, 138-145.	3.3	4
39	Extended Large Area Si/ZnO Heterojunction Biosensor for Assessing Functional Behavior of Primary Cortical Neuronal Cells. IEEE Sensors Journal, 2021, 21, 14619-14626.	4.7	4
40	Revisiting Methodologies for In Vitro Preparations of Advanced Glycation End Products. Applied Biochemistry and Biotechnology, 2022, 194, 2831-2855.	2.9	4
41	Fabrication and In Vitro Characterization of Luffa-based Composite Scaffolds Incorporated with Gelatin, Hydroxyapatite and Psyllium Husk for Bone Tissue Engineering. Journal of Biomaterials Science, Polymer Edition, 0, , 1-24.	3.5	4
42	Functional synapse formation between compartmentalized cortical neurons cultured inside microfluidic devices. Biochip Journal, 2011, 5, 289-298.	4.9	3
43	Fabrication and characterization of electrospun psyllium huskâ€based nanofibers for tissue regeneration. Journal of Applied Polymer Science, 2021, 138, 50569.	2.6	3
44	Axon orientation by gradient of cytochalasin D inside microfluidic device. Biochip Journal, 2012, 6, 335-341.	4.9	2
45	A multi-inlet microfluidic device fabricated for in situ detection of multiple cytotoxicity endpoints. Biochip Journal, 2012, 6, 48-55.	4.9	2
46	Aluminium Oxide Thin-Film Based In Vitro Cell-Substrate Sensing Device for Monitoring Proliferation of Myoblast Cells. IEEE Transactions on Nanobioscience, 2021, 20, 331-337.	3.3	2
47	Low density culture of mammalian primary neurons in compartmentalized microfluidic devices. Biomedical Microdevices, 2019, 21, 67.	2.8	1
48	Gelatin grafted poly(<scp>D,L</scp> â€ <scp>lactide</scp>) as an inhibitor of protein aggregation: An <scp><i>in vitro</i></scp> case study. Biopolymers, 2020, 111, e23383.	2.4	1
49	Drug Screening: Microfluidic Chip for Site-Specific Neuropharmacological Treatment and Activity Probing of 3D Neuronal "Optonet―Cultures (Adv. Healthcare Mater. 10/2015). Advanced Healthcare Materials, 2015, 4, 1477-1477.	7.6	0