List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4848032/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Refractoriness to the treatment of sodium stibogluconate in Indian kala-azar field isolates persist in in vitro and in vivo experimental models. Parasitology Research, 2005, 96, 216-223.	0.6	106
2	Proteomic approach for identification and characterization of novel immunostimulatory proteins from soluble antigens ofLeishmania donovani promastigotes. Proteomics, 2007, 7, 816-823.	1.3	102
3	Immunoadjuvant Chemotherapy of Visceral Leishmaniasis in Hamsters Using Amphotericin B-Encapsulated Nanoemulsion Template-Based Chitosan Nanocapsules. Antimicrobial Agents and Chemotherapy, 2013, 57, 1714-1722.	1.4	89
4	Chitosan-Assisted Immunotherapy for Intervention of Experimental Leishmaniasis via Amphotericin B-Loaded Solid Lipid Nanoparticles. Applied Biochemistry and Biotechnology, 2014, 174, 1309-1330.	1.4	82
5	Successful vaccination against Leishmania donovani infection in Indian langur using alum-precipitated autoclaved Leishmania major with BCG. Vaccine, 2001, 19, 3485-3492.	1.7	81
6	Antileishmanial activity of nano-amphotericin B deoxycholate. Journal of Antimicrobial Chemotherapy, 2008, 62, 376-380.	1.3	75
7	Immunization with the DNA-Encoding N-Terminal Domain of Proteophosphoglycan of <i>Leishmania donovani</i> Generates Th1-Type Immunoprotective Response against Experimental Visceral Leishmaniasis. Journal of Immunology, 2009, 183, 470-479.	0.4	73
8	Reporter genes facilitating discovery of drugs targeting protozoan parasites. Trends in Parasitology, 2009, 25, 432-439.	1.5	70
9	Pro-apoptotic effect of the landrace Bangla Mahoba of Piper betle on Leishmania donovani may be due to the high content of eugenol. Journal of Medical Microbiology, 2009, 58, 1058-1066.	0.7	68
10	16αâ€Hydroxyclerodaâ€3,13 (14)Zâ€dienâ€15,16â€olide from <i>Polyalthia longifolia</i> : a safe and orally activ antileishmanial agent. British Journal of Pharmacology, 2010, 159, 1143-1150.	^{/e} 2.7	65
11	<i>In vitro</i> evaluation of surface functionalized gelatin nanoparticles for macrophage targeting in the therapy of visceral leishmaniasis. Journal of Drug Targeting, 2010, 18, 93-105.	2.1	64
12	Elongation Factor-2, a Th1 Stimulatory Protein of <i>Leishmania donovani</i> , Generates Strong IFN-γ and IL-12 Response in Cured <i>Leishmania</i> -Infected Patients/Hamsters and Protects Hamsters against <i>Leishmania</i> Challenge. Journal of Immunology, 2011, 187, 6417-6427.	0.4	64
13	In vitro and in vivo leishmanicidal activity of Dysoxylum binectariferum and its fractions against Leishmania donovani. Phytomedicine, 2007, 14, 36-42.	2.3	62
14	Proteome mapping of overexpressed membraneâ€enriched and cytosolic proteins in sodium antimony gluconate (SAG) resistant clinical isolate of <i>Leishmania donovani</i> . British Journal of Clinical Pharmacology, 2010, 70, 609-617.	1.1	60
15	Chitosan coated PluronicF127 micelles for effective delivery of Amphotericin B in experimental visceral leishmaniasis. International Journal of Biological Macromolecules, 2017, 105, 1220-1231.	3.6	59
16	Visceral Leishmaniasis: Advancements in Vaccine Development via Classical and Molecular Approaches. Frontiers in Immunology, 2014, 5, 380.	2.2	57
17	Antileishmanial efficacy of amphotericin B bearing emulsomes against experimental visceral leishmaniasis. Journal of Drug Targeting, 2007, 15, 437-444.	2.1	56
18	Glycolipids and other constituents from Desmodium gangeticum with antileishmanial and immunomodulatory activities. Bioorganic and Medicinal Chemistry Letters, 2005, 15, 4543-4546.	1.0	55

#	Article	IF	CITATIONS
19	Th-1 biased immunomodulation and synergistic antileishmanial activity of stable cationic lipid–polymer hybrid nanoparticle: Biodistribution and toxicity assessment of encapsulated amphotericin B. European Journal of Pharmaceutics and Biopharmaceutics, 2015, 89, 62-73.	2.0	55
20	Development of nanocapsules bearing doxorubicin for macrophage targeting through the phosphatidylserine ligand: a system for intervention in visceral leishmaniasis. Journal of Antimicrobial Chemotherapy, 2012, 67, 2650-2660.	1.3	54
21	Self Assembled Ionically Sodium Alginate Cross-Linked Amphotericin B Encapsulated Glycol Chitosan Stearate Nanoparticles: Applicability in Better Chemotherapy and Non-Toxic Delivery in Visceral Leishmaniasis. Pharmaceutical Research, 2015, 32, 1727-1740.	1.7	52
22	Immunostimulatory cellular responses of cured Leishmania-infected patients and hamsters against the integral membrane proteins and non-membranous soluble proteins of a recent clinical isolate of Leishmania donovani. Clinical and Experimental Immunology, 2005, 140, 149-156.	1.1	50
23	Th1-stimulatory polyproteins of soluble Leishmania donovani promastigotes ranging from 89.9 to 97.1kDa offers long-lasting protection against experimental visceral leishmaniasis. Vaccine, 2008, 26, 5700-5711.	1.7	49
24	Development of targeted 1,2-diacyl-sn-glycero-3-phospho- <scp>l</scp> -serine-coated gelatin nanoparticles loaded with amphotericin B for improved <i>in vitro</i> and <i>in vivo</i> effect in leishmaniasis. Expert Opinion on Drug Delivery, 2014, 11, 633-646.	2.4	47
25	SHORT REPORT: FLUORESCENT LEISHMANIA: APPLICATION TO ANTI-LEISHMANIAL DRUG TESTING. American Journal of Tropical Medicine and Hygiene, 2004, 71, 400-402.	0.6	46
26	Vaccination of langur monkeys (Presbytis entellus) against Leishmania donovani with autoclaved L. major plus BCG. Parasitology, 1998, 116, 219-221.	0.7	45
27	Chitosan-based macrophage-mediated drug targeting for the treatment of experimental visceral leishmaniasis. Journal of Microencapsulation, 2011, 28, 301-310.	1.2	45
28	Targeted chemotherapy of visceral leishmaniasis by lactoferrin-appended amphotericin B-loaded nanoreservoir: <i>in vitro</i> and <i>in vivo</i> studies Nanomedicine, 2015, 10, 1093-1109.	1.7	45
29	Efficacy of Desmodium gangeticum extract and its fractions against experimental visceral leishmaniasis. Journal of Ethnopharmacology, 2005, 98, 83-88.	2.0	44
30	Antileishmanial potential of a marine sponge, Haliclona exigua (Kirkpatrick) against experimental visceral leishmaniasis. Parasitology Research, 2007, 101, 317-324.	0.6	44
31	Characterization of Glycolytic Enzymes - rAldolase and rEnolase of Leishmania donovani, Identified as Th1 Stimulatory Proteins, for Their Immunogenicity and Immunoprophylactic Efficacies against Experimental Visceral Leishmaniasis. PLoS ONE, 2014, 9, e86073.	1.1	44
32	Transgenic Leishmania donovani clinical isolates expressing green fluorescent protein constitutively for rapid and reliable ex vivo drug screening. Journal of Antimicrobial Chemotherapy, 2009, 64, 370-374.	1.3	43
33	Leishmania donovani: Identification of stimulatory soluble antigenic proteins using cured human and hamster lymphocytes for their prophylactic potential against visceral leishmaniasis. Vaccine, 2006, 24, 2900-2909.	1.7	42
34	Photodynamic vaccination of hamsters with inducible suicidal mutants of <i>Leishmania amazonensis</i> elicits immunity against visceral leishmaniasis. European Journal of Immunology, 2009, 39, 178-191.	1.6	41
35	Antileishmanial activity mediated by apoptosis and structure-based target study of peganine hydrochloride dihydrate: an approach for rational drug design. Journal of Antimicrobial Chemotherapy, 2008, 62, 998-1002.	1.3	40
36	Macrophage-targeted chitosan anchored PLGA nanoparticles bearing doxorubicin and amphotericin B against visceral leishmaniasis. RSC Advances, 2016, 6, 71705-71718.	1.7	39

#	Article	lF	CITATIONS
37	Non PC liposome entrapped promastigote antigens elicit parasite specific CD8+ and CD4+ T-cell immune response and protect hamsters against visceral leishmaniasis. Vaccine, 2006, 24, 1800-1810.	1.7	38
38	Evaluation of antileishmanial potential of Tinospora sinensis against experimental visceral leishmaniasis. Parasitology Research, 2008, 102, 561-565.	0.6	37
39	Peganine hydrochloride dihydrate an orally active antileishmanial agent. Bioorganic and Medicinal Chemistry Letters, 2009, 19, 2585-2586.	1.0	37
40	Evaluation of Leishmania donovani Protein Disulfide Isomerase as a Potential Immunogenic Protein/Vaccine Candidate against Visceral Leishmaniasis. PLoS ONE, 2012, 7, e35670.	1.1	37
41	Covalent Functionalized Self-Assembled Lipo-Polymerosome Bearing Amphotericin B for Better Management of Leishmaniasis and Its Toxicity Evaluation. Molecular Pharmaceutics, 2014, 11, 951-963.	2.3	35
42	Visceral leishmaniasis: An overview of vaccine adjuvants and their applications. Vaccine, 2019, 37, 3505-3519.	1.7	34
43	Leishmania donovani pteridine reductase 1: Biochemical properties and structure-modeling studies. Experimental Parasitology, 2008, 120, 73-79.	0.5	33
44	Leishmania donovani Triose Phosphate Isomerase: A Potential Vaccine Target against Visceral Leishmaniasis. PLoS ONE, 2012, 7, e45766.	1.1	31
45	Development of 4-sulfated N -acetyl galactosamine anchored chitosan nanoparticles: A dual strategy for effective management of Leishmaniasis. Colloids and Surfaces B: Biointerfaces, 2015, 136, 150-159.	2.5	31
46	Induction of Th1-type cellular responses in cured/exposed Leishmania-infected patients and hamsters against polyproteins of soluble Leishmania donovani promastigotes ranging from 89.9 to 97.1kDa. Vaccine, 2008, 26, 4813-4818.	1.7	30
47	Treatment of Leishmania donovani-infected hamsters with miltefosine: analysis of cytokine mRNA expression by real-time PCR, lymphoproliferation, nitrite production and antibody responses. Journal of Antimicrobial Chemotherapy, 2012, 67, 440-443.	1.3	30
48	Prophylactic potential of autoclaved Leishmania donovani with BCG against experimental visceral leishmaniasis. Parasitology, 2003, 127, 107-114.	0.7	29
49	Efficacy of human β-casein fragment (54–59) and its synthetic analogue compound 89/215 against Leishmania donovani in hamsters. Peptides, 2004, 25, 1873-1881.	1.2	29
50	Exploitation of Lectinized Lipo-Polymerosome Encapsulated Amphotericin B to Target Macrophages for Effective Chemotherapy of Visceral Leishmaniasis. Bioconjugate Chemistry, 2014, 25, 1091-1102.	1.8	29
51	Overexpressed Macrophage Mannose Receptor Targeted Nanocapsules- Mediated Cargo Delivery Approach for Eradication of Resident Parasite: In Vitro and In Vivo Studies. Pharmaceutical Research, 2015, 32, 2663-77.	1.7	29
52	Chondroitin nanocapsules enhanced doxorubicin induced apoptosis against leishmaniasis via Th1 immune response. International Journal of Biological Macromolecules, 2015, 79, 27-36.	3.6	29
53	Th1 Stimulatory Proteins of Leishmania donovani: Comparative Cellular and Protective Responses of rTriose Phosphate Isomerase, rProtein Disulfide Isomerase and rElongation Factor-2 in Combination with rHSP70 against Visceral Leishmaniasis. PLoS ONE, 2014, 9, e108556.	1.1	29
54	Proteophosphoglycan is differentially expressed in sodium stibogluconate-sensitive and resistant Indian clinical isolates of Leishmania donovani. Parasitology, 2007, 134, 1175-1184.	0.7	28

#	Article	IF	CITATIONS
55	Antileishmanial activity in vitro and in vivo of constituents of sea cucumber Actinopyga lecanora. Parasitology Research, 2008, 103, 351-354.	0.6	28
56	Discovery of Novel Vaccine Candidates and Drug Targets Against Visceral Leishmaniasis Using Proteomics and Transcriptomics. Current Drug Targets, 2008, 9, 938-947.	1.0	27
57	Dermotropic <i>Leishmania donovani</i> in Sri Lanka: visceralizing potential in clinical and preclinical studies. Parasitology, 2018, 145, 443-452.	0.7	26
58	A novel recombinant Leishmania donovani p45, a partial coding region of methionine aminopeptidase, generates protective immunity by inducing a Th1 stimulatory response against experimental visceral leishmaniasis. International Journal for Parasitology, 2012, 42, 429-435.	1.3	25
59	Over-Expression of 60s Ribosomal L23a Is Associated with Cellular Proliferation in SAG Resistant Clinical Isolates of Leishmania donovani. PLoS Neglected Tropical Diseases, 2013, 7, e2527.	1.3	25
60	An orally effective dihydropyrimidone (DHPM) analogue induces apoptosis-like cell death in clinical isolates of Leishmania donovani overexpressing pteridine reductase 1. Parasitology Research, 2009, 105, 1317-1325.	0.6	24
61	Intake of nutrient supplements affects multiplication ofLeishmania donovaniin hamsters. Parasitology, 2004, 129, 685-691.	0.7	23
62	Constituents ofTinospora sinensisand their antileishmanial activity againstLeishmania donovaniâ€. Natural Product Research, 2009, 23, 1134-1143.	1.0	23
63	Amplified fragment length polymorphism (AFLP) analysis is useful for distinguishing Leishmania species of visceral and cutaneous forms. Acta Tropica, 2010, 113, 202-206.	0.9	23
64	Proteomic analyses of membrane enriched proteins of Leishmania donovani Indian clinical isolate by mass spectrometry. Parasitology International, 2015, 64, 36-42.	0.6	23
65	Bioinspired Calcium Phosphate Nanoparticles Featuring as Efficient Carrier and Prompter for Macrophage Intervention in Experimental Leishmaniasis. Pharmaceutical Research, 2016, 33, 2617-2629.	1.7	23
66	Nucleosomal Histone Proteins of L. donovani: A Combination of Recombinant H2A, H2B, H3 and H4 Proteins Were Highly Immunogenic and Offered Optimum Prophylactic Efficacy against Leishmania Challenge in Hamsters. PLoS ONE, 2014, 9, e97911.	1.1	22
67	Short report: fluorescent Leishmania: application to anti-leishmanial drug testing. American Journal of Tropical Medicine and Hygiene, 2004, 71, 400-2.	0.6	22
68	Leishmania donovani: cellular and humoral immune responses in Indian langur monkeys, Presbytis entellus. Acta Tropica, 1999, 73, 37-48.	0.9	21
69	Identification of genetic markers in Sodium Antimony Gluconate (SAG) sensitive and resistant Indian clinical isolates of Leishmania donovani through amplified fragment length polymorphism (AFLP). Acta Tropica, 2009, 110, 80-85.	0.9	21
70	Development and Performance Evaluation of Amphotericin B Transfersomes Against Resistant and Sensitive Clinical Isolates of Visceral Leishmaniasis. Journal of Biomedical Nanotechnology, 2010, 6, 293-302.	0.5	21
71	Coating doxorubicinâ€loaded nanocapsules with alginate enhances therapeutic efficacy against <scp><i>L</i></scp> <i>eishmania</i> in hamsters by inducing <scp>T</scp> h1â€type immune responses. British Journal of Pharmacology, 2014, 171, 4038-4050.	2.7	21
72	Recombinant NAD-dependent SIR-2 Protein of Leishmania donovani: Immunobiochemical Characterization as a Potential Vaccine against Visceral Leishmaniasis. PLoS Neglected Tropical Diseases, 2015, 9, e0003557.	1.3	21

#	Article	IF	CITATIONS
73	Hexadecylphosphocholine (Miltefosine) stabilized chitosan modified Ampholipospheres as prototype co-delivery vehicle for enhanced killing of L. donovani. International Journal of Biological Macromolecules, 2017, 105, 625-637.	3.6	21
74	Protein quality control machinery in intracellular protozoan parasites: hopes and challenges for therapeutic targeting. Cell Stress and Chaperones, 2019, 24, 891-904.	1.2	21
75	Antileishmanial action ofTephrosia purpurea linn, extract and its fractions against experimental visceral leishmaniasis. Drug Development Research, 2003, 60, 285-293.	1.4	20
76	Development and Performance Evaluation of Alginate-Capped Amphotericin B Lipid Nanoconstructs Against Visceral Leishmaniasis. Journal of Biomedical Nanotechnology, 2011, 7, 123-124.	0.5	20
77	Polymeric colloidal particulate systems: intelligent tools for intracellular targeting of antileishmanial cargos. Expert Opinion on Drug Delivery, 2013, 10, 1633-1651.	2.4	19
78	Fabrication of 3-O-sn-Phosphatidyl-L-serine Anchored PLGA Nanoparticle Bearing Amphotericin B for Macrophage Targeting. Pharmaceutical Research, 2018, 35, 60.	1.7	19
79	Design and Development of Amphotericin B Bearing Polycaprolactone Microparticles for Macrophage Targeting. Journal of Biomedical Nanotechnology, 2011, 7, 50-51.	0.5	18
80	Development of doxorubicin loaded novel core shell structured nanocapsules for the intervention of visceral leishmaniasis. Journal of Microencapsulation, 2013, 30, 441-450.	1.2	18
81	Efficacy of Leishmania donovani trypanothione reductase, identified as a potent Th1 stimulatory protein, for its immunogenicity and prophylactic potential against experimental visceral leishmaniasis. Parasitology Research, 2014, 113, 851-862.	0.6	18
82	Immunotherapeutic potential of Leishmania (Leishmania) donovani Th1 stimulatory proteins against experimental visceral leishmaniasis. Vaccine, 2018, 36, 2293-2299.	1.7	18
83	Immunogenicity and Protective Efficacy of T-Cell Epitopes Derived From Potential Th1 Stimulatory Proteins of Leishmania (Leishmania) donovani. Frontiers in Immunology, 2019, 10, 288.	2.2	18
84	Isolation of integral membrane proteins of Leishmania promastigotes and evaluation of their prophylactic potential in hamsters against experimental visceral leishmaniasis. Vaccine, 2005, 23, 1189-1196.	1.7	16
85	Identification of Leishmania donovani antigens stimulating cellular immune responses in exposed immune individuals. Clinical and Experimental Immunology, 2006, 143, 380-388.	1.1	16
86	Proteomic approaches for discovery of new targets for vaccine and therapeutics against visceral leishmaniasis. Proteomics - Clinical Applications, 2008, 2, 372-386.	0.8	16
87	Identification of NovelS-Adenosyl-I-Homocysteine Hydrolase Inhibitors through Homology-Model-Based Virtual Screening, Synthesis, and Biological Evaluation. Journal of Chemical Information and Modeling, 2012, 52, 777-791.	2.5	16
88	Characterization of the Proliferating Cell Nuclear Antigen of Leishmania donovani Clinical Isolates and Its Association with Antimony Resistance. Antimicrobial Agents and Chemotherapy, 2014, 58, 2997-3007.	1.4	16
89	Synergistic enhancement of parasiticidal activity of amphotericin <scp>B</scp> using copaiba oil in nanoemulsified carrier for oral delivery: an approach for nonâ€ŧoxic chemotherapy. British Journal of Pharmacology, 2015, 172, 3596-3610.	2.7	16
90	Comparative Analysis of Cellular Immune Responses in Treated Leishmania Patients and Hamsters against Recombinant Th1 Stimulatory Proteins of Leishmania donovani. Frontiers in Microbiology, 2016, 7, 312.	1.5	16

#	Article	IF	CITATIONS
91	Uptake of Biodegradable Gel-Assisted LBL Nanomatrix by Leishmania donovani-Infected Macrophages. AAPS PharmSciTech, 2009, 10, 1343-7.	1.5	15
92	Leishmania donovani: Oral therapy with glycosyl 1,4-dihydropyridine analogue showing apoptosis like phenotypes targeting pteridine reductase 1 in intracellular amastigotes. Experimental Parasitology, 2010, 125, 310-314.	0.5	14
93	Investigations on feasibility of <i>in situ</i> development of amphotericin B liposomes for industrial applications. Journal of Liposome Research, 2012, 22, 8-17.	1.5	13
94	Amplified fragment length polymorphism: an adept technique for genome mapping, genetic differentiation, and intraspecific variation in protozoan parasites. Parasitology Research, 2013, 112, 457-466.	0.6	13
95	Over-Expression of Cysteine Leucine Rich Protein Is Related to SAG Resistance in Clinical Isolates of Leishmania donovani. PLoS Neglected Tropical Diseases, 2015, 9, e0003992.	1.3	13
96	Withania somnifera chemotype NMITLI 101R significantly increases the efficacy of antileishmanial drugs by generating strong IFN-γ and IL-12 mediated immune responses in Leishmania donovani infected hamsters. Phytomedicine, 2017, 24, 87-95.	2.3	12
97	Status of ILâ€4 and ILâ€10 driven markers in experimental models of Visceral Leishmaniasis. Parasite Immunology, 2021, 43, e12783.	0.7	12
98	Age-influenced population kinetics and immunological responses of Leishmania donovani in hamsters. Parasitology Research, 2007, 101, 919-924.	0.6	11
99	Mass spectrometry-based proteomic analysis ofLeishmania donovanisoluble proteins in Indian clinical isolate. Pathogens and Disease, 2014, 70, 84-87.	0.8	11
100	Immunostimulatory potential and proteome profiling of <i>Leishmania donovani</i> soluble exogenous antigens. Parasite Immunology, 2015, 37, 368-375.	0.7	11
101	Putative Drug and Vaccine Target Identification in Leishmania donovani Membrane Proteins Using Naà ve Bayes Probabilistic Classifier. IEEE/ACM Transactions on Computational Biology and Bioinformatics, 2017, 14, 204-211.	1.9	11
102	Tetracycline treatment targeting <i>Wolbachia</i> affects expression of an array of proteins in <i>Brugia malayi</i> parasite. Proteomics, 2009, 9, 4192-4208.	1.3	10
103	Antigen Presenting Cells Targeting and Stimulation Potential of Lipoteichoic Acid Functionalized Lipo-Polymerosome: A Chemo-Immunotherapeutic Approach against Intracellular Infectious Disease. Biomacromolecules, 2015, 16, 1073-1087.	2.6	10
104	Development of Leishmania donovani stably expressing DsRed for flow cytometry-based drug screening using chalcone thiazolyl-hydrazone as a new antileishmanial target. International Journal of Antimicrobial Agents, 2016, 48, 695-702.	1.1	10
105	Parasitic load determination by differential expressions of 5-lipoxygenase and PGE2 synthases in visceral leishmaniasis. Prostaglandins and Other Lipid Mediators, 2020, 147, 106390.	1.0	10
106	Acyclic Pyrazolo[3,4- d]Pyrimidine Nucleoside as Potential Leishmaniostatic Agent *. Nucleosides, Nucleotides and Nucleic Acids, 2006, 25, 55-60.	0.4	9
107	Efficacy of <i><scp>W</scp>ithania somnifera</i> chemotypes <scp>NMITLI</scp> – 101R, 118R and Withaferin A against experimental visceral leishmaniasis. Parasite Immunology, 2014, 36, 253-265.	0.7	9
108	Immunoprotective responses of T helper type 1 stimulatory protein-S-adenosyl-L-homocysteine hydrolase against experimental visceral leishmaniasis. Clinical and Experimental Immunology, 2016, 185, 165-179.	1.1	9

#	Article	IF	CITATIONS
109	Preventive as well as therapeutic significances of linoleic acid in the containment of Leishmania donovani infection. Biochimie, 2020, 175, 13-22.	1.3	9
110	Supplementation of host response by targeting nitric oxide to the macrophage cytosol is efficacious in the hamster model of visceral leishmaniasis and adds to efficacy of amphotericin B. International Journal for Parasitology: Drugs and Drug Resistance, 2016, 6, 125-132.	1.4	8
111	Presbytis entellus: a primate model for parasitic disease research. Trends in Parasitology, 2004, 20, 358-360.	1.5	7
112	Leishmania donovani: Immunostimulatory Cellular Responses of Membrane and Soluble Protein Fractions of Splenic Amastigotes in Cured Patient and Hamsters. PLoS ONE, 2012, 7, e30746.	1.1	7
113	Emerging Role of Vesicular Carriers for Therapy of Visceral Leishmaniasis: Conventional versus Novel. Critical Reviews in Therapeutic Drug Carrier Systems, 2010, 27, 461-507.	1.2	7
114	Prophylactic interferon-Î ³ and interleukin-17 facilitate parasite clearance in experimental visceral leishmaniasis. Tropical Parasitology, 2019, 9, 30-35.	0.2	7
115	Immunological consequences of stress-related proteins – cytosolic tryparedoxin peroxidase and chaperonin TCP20 – identified in splenic amastigotes of <i>Leishmania donovani</i> as Th1 stimulatory, in experimental visceral leishmaniasis. Parasitology, 2015, 142, 728-744.	0.7	6
116	Comparison Between Immuno-Clinicopathological Features of Experimental and Human Visceral Leishmaniasis by Leishmania donovani. Acta Parasitologica, 2020, 65, 57-67.	0.4	6
117	A Chimera of Th1 Stimulatory Proteins of Leishmania donovani Offers Moderate Immunotherapeutic Efficacy with a Th1-Inclined Immune Response against Visceral Leishmaniasis. BioMed Research International, 2021, 2021, 1-14.	0.9	6
118	Prophylactic Efficacy of Highâ€Molecularâ€Weight Antigenic Fractions of a Recent Clinical Isolate of <i>Leishmania donovani</i> Against Visceral Leishmaniasis. Scandinavian Journal of Immunology, 2008, 68, 492-501.	1.3	5
119	Management of visceral leishmaniasis with therapeutic vaccines. Vaccine (Auckland, N Z), 0, Volume 6, 33-45.	1.7	5
120	Molecular, biochemical characterization and assessment of immunogenic potential of cofactor-independent phosphoglycerate mutase against <i>Leishmania donovani</i> : a step towards exploring novel vaccine candidate. Parasitology, 2018, 145, 508-526.	0.7	5
121	Development and Characterization of Doxorubicin Loaded Microparticles Against Experimental Visceral Leishmaniasis. Journal of Biomedical Nanotechnology, 2011, 7, 135-136.	0.5	4
122	Unresponsiveness of <i>Mycobacterium w</i> vaccine in managing acute and chronic <i>Leishmania donovani</i> infections in mouse and hamster. Parasitology, 2013, 140, 435-444.	0.7	4
123	Immune responses in normal Indian langur monkeys (Presbytis entellus) - a primate model for visceral leishmaniasis. Journal of Medical Primatology, 2004, 33, 65-69.	0.3	3
124	Cloning, Expression and Purification of L. Donovani Specific Antigen for Serodiagnosis of Visceral Leishmaniasis. Journal of Molecular Biomarkers & Diagnosis, 2013, 04, 1000141.	0.4	3
125	Leishmania donovani secretory protein nucleoside diphosphate kinase b localizes in its nucleus and prevents ATP mediated cytolysis of macrophages. Microbial Pathogenesis, 2022, 166, 105457.	1.3	3
126	Therapeutic Potential of Harmala (Peganum harmala L.) Seeds with an Array of Pharmacological Activities. , 2011, , 601-609.		2

#	ARTICLE	IF	CITATIONS
127	Combined immunotherapeutic effect of Leishmania-derived recombinant aldolase and Ambisome against experimental visceral leishmaniasis. Journal of Microbiology, Immunology and Infection, 2023, 56, 163-171.	1.5	2
128	Purified Splenic amastigotes of Leishmania donovani â€Immunoproteomic approach for exploring Th1 stimulatory polyproteins. Parasite Immunology, 2020, 42, e12729.	0.7	1