Shuangxi Xing

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/484717/publications.pdf

Version: 2024-02-01

76 papers 2,961 citations

33 h-index 53 g-index

78 all docs

78 docs citations

78 times ranked 4448 citing authors

#	Article	IF	CITATIONS
1	Facile route to achieve MoSe2-Ni3Se2 on nickel foam as efficient dual functional electrocatalysts for overall water splitting. Frontiers in Energy, 2022, 16, 483-491.	1.2	6
2	Cu/Co/CoS ₂ embedded in S,N-doped carbon as highly efficient oxygen reduction and evolution electrocatalyst for rechargeable zinc–air batteries. Inorganic Chemistry Frontiers, 2022, 9, 2917-2927.	3.0	3
3	Interface Engineering of CoO/N-Doped Carbon Nanomaterials as a Bifunctional Electrocatalyst for Rechargeable Zinc-Air Batteries. Journal of the Electrochemical Society, 2022, 169, 060537.	1.3	2
4	Molybdenum and Phosphorous Dualâ€Doped, Transitionâ€Metalâ€Based, Freeâ€Standing Electrode for Overall Water Splitting. ChemElectroChem, 2021, 8, 1612-1620.	1.7	10
5	Facile route to achieve N, S-codoped carbon as bifunctional electrocatalyst for oxygen reduction and evolution reactions. Journal of Alloys and Compounds, 2020, 821, 153484.	2.8	23
6	CeO 2 Encapsulated by Iron, Sulfur, and Nitrogenâ€Doped Carbons for Enhanced Oxygen Reduction Reaction Catalytic Activity. ChemElectroChem, 2020, 7, 642-648.	1.7	14
7	Urea-assisted enhanced electrocatalytic activity of MoS ₂ –Ni ₃ S ₂ for overall water splitting. Inorganic Chemistry Frontiers, 2020, 7, 3588-3597.	3.0	32
8	A multi-shelled CeO ₂ /Co@N-doped hollow carbon microsphere as a trifunctional electrocatalyst for a rechargeable zinc–air battery and overall water splitting. Sustainable Energy and Fuels, 2020, 4, 5156-5164.	2.5	12
9	Facile Route to Achieve Co@Mo2C Encapsulated by N-Doped Carbon as Efficient Electrocatalyst for Overall Water Splitting in Alkaline Media. Journal of the Electrochemical Society, 2020, 167, 044520.	1.3	10
10	Achieving Janus Ag@N-doped carbon for oxygen reduction reaction from eccentric encapsulated Ag@polypyrrole. Journal of Alloys and Compounds, 2019, 785, 491-498.	2.8	20
11	Achieving nitrogen-doped carbon/MnO2 nanocomposites for catalyzing the oxygen reduction reaction. Dalton Transactions, 2019, 48, 3045-3051.	1.6	13
12	A facile route to achieve ultrafine Fe2O3 nanorods anchored on graphene oxide for application in lithium-ion battery. Journal of Power Sources, 2019, 416, 118-124.	4.0	67
13	Facile route to achieve bifunctional electrocatalysts for oxygen reduction and evolution reactions derived from CeO ₂ encapsulated by the zeolitic imidazolate framework-67. Inorganic Chemistry Frontiers, 2019, 6, 3255-3263.	3.0	22
14	One-pot achievement of MnO ₂ /Fe ₂ O ₃ nanocomposites for the oxygen reduction reaction with enhanced catalytic activity. New Journal of Chemistry, 2019, 43, 16870-16875.	1.4	8
15	Preparation of Hollow CeO ₂ /CePO ₄ with Nitrogen and Phosphorus Coâ€Doped Carbon Shells for Enhanced Oxygen Reduction Reaction Catalytic Activity. ChemElectroChem, 2018, 5, 793-798.	1.7	37
16	Mo 0.42 C 0.58 Nanoparticles Embedded in Nitrogenâ€Doped Carbon as Electrocatalyst towards Oxygen Reduction Reaction. ChemistrySelect, 2018, 3, 5106-5112.	0.7	9
17	Confined polyaniline derived mesoporous carbon for oxygen reduction reaction. European Polymer Journal, 2017, 88, 1-8.	2.6	14
18	Achieving MnO ₂ Nanosheets through Surface Redox Reaction on Nickel Nanochains for Catalysis and Energy Storage. Chemistry - A European Journal, 2017, 23, 5557-5564.	1.7	21

#	Article	IF	CITATIONS
19	One-step synthesis of hollow nanostructured aniline oligomers and their derived nitrogen doped carbon. Synthetic Metals, 2017, 227, 170-176.	2.1	4
20	Enhancing the Catalytic Activity of Zeolitic Imidazolate Frameworkâ€8â€Derived Nâ€Doped Carbon with Incorporated CeO ₂ Nanoparticles in the Oxygen Reduction Reaction. Chemistry - A European Journal, 2017, 23, 10690-10697.	1.7	48
21	Controllable silver embedding into polypyrrole. Journal of Alloys and Compounds, 2017, 709, 431-437.	2.8	14
22	Dual Role of Polyaniline for Achieving Ag Dendrites and Enhancing Its Oxygen Reduction Reaction Catalytic Activity. ChemistrySelect, 2017, 2, 10300-10303.	0.7	14
23	Depletion sphere: Explaining the number of Ag islands on Au nanoparticles. Chemical Science, 2017, 8, 430-436.	3.7	57
24	Facile Fabrication of Wellâ€Dispersed Pt Nanoparticles in Mesoporous Silica with Large Open Spaces and Their Catalytic Applications. Chemistry - A European Journal, 2016, 22, 9293-9298.	1.7	15
25	Facile preparation and sulfidation analysis for activated multiporous carbon@NiCo2S4 nanostructure with enhanced supercapacitive properties. Electrochimica Acta, 2016, 211, 627-635.	2.6	69
26	Facile route to achieve hierarchical hollow MnO2 nanostructures. Electrochimica Acta, 2016, 203, 59-65.	2.6	39
27	Design and construction of three-dimensional flower-like CuO hierarchical nanostructures on copper foam for high performance supercapacitor. Electrochimica Acta, 2016, 210, 639-645.	2.6	88
28	One-pot achieving well-dispersed copper nanoparticles on N-doped carbon films. Journal of Alloys and Compounds, 2016, 656, 622-627.	2.8	11
29	In situ assembly of monodispersed Ag nanoparticles in the channels of ordered mesopolymers as a highly active and reusable hydrogenation catalyst. Journal of Materials Chemistry A, 2015, 3, 4307-4313.	5.2	46
30	Manipulating the nickel shape and catalytic performance: from spheres to chains to urchins. CrystEngComm, 2015, 17, 4343-4348.	1.3	7
31	A novel high-performance electrode: in-situ growth of copper sulfide film on copper foil for the application of supercapacitor. Journal of Materials Science: Materials in Electronics, 2015, 26, 4185-4192.	1.1	22
32	Anchoring gold nanoparticles inside polyaniline shells with magnetic cores for the enhancement of catalytic stability. New Journal of Chemistry, 2015, 39, 8588-8593.	1.4	15
33	Confining the polymerization of aniline to generate yolk–shell polyaniline@SiO ₂ nanostructures. RSC Advances, 2015, 5, 79172-79177.	1.7	7
34	Hexamethylenetetramine-induced synthesis of hierarchical NiO nanostructures on nickel foam and their electrochemical properties. Journal of Alloys and Compounds, 2014, 603, 190-196.	2.8	27
35	Manipulation on ZnO heterostructures: from binary ZnO–Ag to ternary ZnO–Ag–polypyrrole. CrystEngComm, 2014, 16, 10943-10948.	1.3	9
36	Facile synthesis of raspberry-like aniline oligomers with excellent adsorption–desorption properties. New Journal of Chemistry, 2014, 38, 3029-3034.	1.4	5

#	Article	IF	CITATIONS
37	A novel strategy to fabricate multifunctional Fe3O4@C@TiO2 yolk–shell structures as magnetically recyclable photocatalysts. Nanoscale, 2014, 6, 6603.	2.8	33
38	Toward modulation of the naphthopyran photochromism: a miniemulsion copolymerization strategy. New Journal of Chemistry, 2014, 38, 2348.	1.4	10
39	ZIF-8 templated fabrication of rhombic dodecahedron-shaped ZnO@SiO2, ZIF-8@SiO2 yolk–shell and SiO2 hollow nanoparticles. CrystEngComm, 2014, 16, 6534.	1.3	50
40	Nickel foam based polypyrroleâ€"Ag composite film: a new route toward stable electrodes for supercapacitors. New Journal of Chemistry, 2013, 37, 337-341.	1.4	59
41	Designed Fabrication of Unique Eccentric Mesoporous Silica Nanocluster-Based Core–Shell Nanostructures for pH-Responsive Drug Delivery. ACS Applied Materials & amp; Interfaces, 2013, 5, 7282-7290.	4.0	72
42	Generalized Approach to the Synthesis of Reversible Concentric and Eccentric Polymerâ€Coated Nanostructures. Small, 2013, 9, 825-830.	5.2	43
43	Facile route to achieve silver@polyaniline nanofibers. Synthetic Metals, 2012, 162, 948-952.	2.1	23
44	Architecture-adapted raspberry-like gold@polyaniline particles: facile synthesis and catalytic activity. Colloid and Polymer Science, 2012, 290, 1759-1764.	1.0	17
45	Facile synthesis of hollow urchin-like gold nanoparticles and their catalytic activity. Gold Bulletin, 2012, 45, 91-98.	1.1	33
46	Facile synthesis of nanostructured Ni(OH)2 on nickel foam and its electrochemical property. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2012, 396, 292-298.	2.3	38
47	Design and fabrication of gas sensing hollow core waveguides in near infrared. Optics Communications, 2012, 285, 621-624.	1.0	1
48	One-pot synthesis of nickel oxide–carbon composite microspheres on nickel foam for supercapacitors. Journal of Materials Science, 2012, 47, 2182-2187.	1.7	22
49	A symmetry-adapted shell transformation of core–shell nanoparticles for binary nanoassembly. Chemical Communications, 2011, 47, 12533.	2.2	10
50	One-step synthesis of composite vesicles: Direct polymerization and in situ over-oxidation of thiophene. Chemical Science, 2011, 2, 2109.	3.7	125
51	Cu2O acting as a robust catalyst in CuAAC reactions: water is the required medium. Green Chemistry, 2011, 13, 562.	4.6	85
52	Urea-induced Direct Synthesis of Nanostructured α-Ni(OH)2 on Nickel Foam. Chemistry Letters, 2011, 40, 1376-1377.	0.7	7
53	Tripleâ€Layer (Au@Perylene)@Polyaniline Nanocomposite: Unconventional Growth of Faceted Organic Nanocrystals on Polycrystalline Au. Angewandte Chemie - International Edition, 2011, 50, 9898-9902.	7.2	55
54	Examining the use of TiO ₂ to enhance the NH ₃ sensitivity of polypyrrole films. Journal of Applied Polymer Science, 2010, 118, 3351-3356.	1.3	28

#	Article	IF	CITATIONS
55	A systems approach towards the stoichiometry-controlled hetero-assembly of nanoparticles. Nature Communications, 2010, 1, 87.	5.8	152
56	Reducing the Symmetry of Bimetallic Au@Ag Nanoparticles by Exploiting Eccentric Polymer Shells. Journal of the American Chemical Society, 2010, 132, 9537-9539.	6.6	121
57	3D dendritic gold nanostructures: seeded growth of a multi-generation fractal architecture. Chemical Communications, 2010, 46, 7112.	2.2	51
58	Scalable Routes to Janus Auâ^'SiO ₂ and Ternary Agâ^'Auâ^'SiO ₂ Nanoparticles. Chemistry of Materials, 2010, 22, 3826-3828.	3.2	168
59	Probing the kinetics of ligand exchange on colloidal gold nanoparticles by surface-enhanced Raman scattering. Dalton Transactions, 2010, 39, 349-351.	1.6	38
60	Hydrothermal synthesis of calcium hydroxyapatite nanorods in the presence of PVP. Journal of Materials Science, 2009, 44, 6273-6279.	1.7	35
61	Fabrication of Polymer Nanocavities with Tailored Openings. ACS Nano, 2009, 3, 3469-3474.	7.3	88
62	Facile fabrication of triple-layer (Au@Ag)@polypyrrole core–shell and (Au@H2O)@polypyrrole yolk–shell nanostructures. Chemical Communications, 2009, , 1653.	2.2	70
63	Highly controlled core/shell structures: tunable conductive polymer shells on gold nanoparticles and nanochains. Journal of Materials Chemistry, 2009, 19, 3286.	6.7	118
64	Preparation of polyaniline–polypyrrole composite subâ€micro fibers via interfacial polymerization. Polymer Composites, 2008, 29, 22-26.	2.3	15
65	Direct synthesis of PbS/polypyrrole core-shell nanocomposites based on octahedral PbS nanocrystals colloid. Materials Letters, 2008, 62, 41-43.	1.3	20
66	Preparation of polyaniline nanofibers via a novel interfacial polymerization method. Synthetic Metals, 2008, 158, 59-63.	2.1	75
67	Preparation of polyaniline nanofibers using the organic solution of aniline as seed. E-Polymers, 2008, 8, .	1.3	1
68	Stability and particle size of polypyrrole dispersion using sodium dodecylbenzenesulfonate as surfactant. E-Polymers, 2007, 7, .	1.3	3
69	Morphology, structure, and conductivity of polypyrrole prepared in the presence of mixed surfactants in aqueous solutions. Journal of Applied Polymer Science, 2007, 104, 1987-1996.	1.3	47
70	One-step synthesis of polypyrrole–Ag nanofiber composites in dilute mixed CTAB/SDS aqueous solution. Materials Letters, 2007, 61, 2040-2044.	1.3	66
71	Synthesis and characterization of Ag/polyaniline core–shell nanocomposites based on silver nanoparticles colloid. Materials Letters, 2007, 61, 2794-2797.	1.3	83
72	Synthesis and characterization of Ag/polypyrrole nanocomposites based on silver nanoparticles colloid. Materials Letters, 2007, 61, 4528-4530.	1.3	74

#	Article	IF	CITATION
73	Morphology and conductivity of polyaniline nanofibers prepared by â€~seeding' polymerization. Polymer, 2006, 47, 2305-2313.	1.8	127
74	Morphology and thermostability of polypyrrole prepared from SDBS aqueous solution. Polymer Bulletin, 2006, 57, 933-943.	1.7	27
75	Synthesis and characterization of polyaniline in CTAB/hexanol/water reversed micelle. Journal of Materials Science, 2005, 40, 215-218.	1.7	42
76	Facile Route to Synthesize Cu, S, N-Doped Carbon as Highly Efficient and Durable Electrocatalyst Towards Oxygen Reduction Reaction. Catalysis Letters, 0, , 1.	1.4	1