
Bo Zhai

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4847051/publications.pdf Version: 2024-02-01

BO 7HAI

#	Article	IF	CITATIONS
1	The BioPlex Network: A Systematic Exploration of the Human Interactome. Cell, 2015, 162, 425-440.	28.9	1,241
2	A mass-tolerant database search identifies a large proportion of unassigned spectra in shotgun proteomics as modified peptides. Nature Biotechnology, 2015, 33, 743-749.	17.5	371
3	mTOR inhibition activates overall protein degradation by the ubiquitin proteasome system as well as by autophagy. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 15790-15797.	7.1	364
4	Cell-cycle-regulated activation of Akt kinase by phosphorylation at its carboxyl terminus. Nature, 2014, 508, 541-545.	27.8	285
5	Phosphoproteome Analysis of <i>Drosophila melanogaster</i> Embryos. Journal of Proteome Research, 2008, 7, 1675-1682.	3.7	250
6	Prolyl hydroxylation by EglN2 destabilizes FOXO3a by blocking its interaction with the USP9x deubiquitinase. Genes and Development, 2014, 28, 1429-1444.	5.9	111
7	Quantitative phosphoproteomic analysis reveals system-wide signaling pathways downstream of SDF-1/CXCR4 in breast cancer stem cells. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, E2182-90.	7.1	109
8	Transcription Factor Networks in Drosophila melanogaster. Cell Reports, 2014, 8, 2031-2043.	6.4	83
9	Combining Genetic Perturbations and Proteomics to Examine Kinase-Phosphatase Networks in Drosophila Embryos. Developmental Cell, 2014, 31, 114-127.	7.0	64
10	Regulation of Cellular Levels of Sprouty2 Protein by Prolyl Hydroxylase Domain and von Hippel-Lindau Proteins. Journal of Biological Chemistry, 2011, 286, 42027-42036.	3.4	50
11	MEKK2 mediates an alternative β-catenin pathway that promotes bone formation. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, E1226-35.	7.1	47
12	Nicotinamide <i>N</i> -Methyltransferase Interacts with Enzymes of the Methionine Cycle and Regulates Methyl Donor Metabolism. Biochemistry, 2018, 57, 5775-5779.	2.5	35
13	MicroRNA-8 promotes robust motor axon targeting by coordinate regulation of cell adhesion molecules during synapse development. Philosophical Transactions of the Royal Society B: Biological Sciences, 2014, 369, 20130517.	4.0	26
14	Reply to "Phosphorylation sites of higher stoichiometry are more conserved". Nature Methods, 2012, 9, 318-318.	19.0	2