
## Xin Chen

## List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4846992/publications.pdf Version: 2024-02-01



| #  | Article                                                                                                                                                                                                                                 | IF  | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 1  | Bimetallic alloys encapsulated in fullerenes as efficient oxygen reduction or oxygen evolution<br>reaction catalysts: A density functional theory study. Journal of Alloys and Compounds, 2022, 894,<br>162508.                         | 2.8 | 20        |
| 2  | Screening of catalytic oxygen reduction reaction activity of 2, 9-dihalo-1, 10-phenanthroline metal complexes: The role of transition metals and halogen substitution. Journal of Colloid and Interface Science, 2022, 609, 130-138.    | 5.0 | 17        |
| 3  | Mechanism of CO2 hydrogenation to methanol on the W-doped Rh(111) surface unveiled by first-principles calculation. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2022, 638, 128332.                                | 2.3 | 10        |
| 4  | Screening of single-atom catalysts sandwiched by boron nitride sheet and graphene for oxygen reduction and oxygen evolution. Renewable Energy, 2022, 189, 502-509.                                                                      | 4.3 | 13        |
| 5  | Dual-metal-organic frameworks as ultrahigh-performance bifunctional electrocatalysts for oxygen reduction and oxygen evolution. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2022, 644, 128882.                    | 2.3 | 17        |
| 6  | Two-Dimensional Metal–Organic Frameworks as Ultrahigh-Performance Electrocatalysts for the Fuel<br>Cell Cathode: A First-Principles Study. Langmuir, 2022, 38, 4996-5005.                                                               | 1.6 | 9         |
| 7  | Density functional theory study of the copper phthalocyanine based metalâ~`organic frameworks as the highly active electrocatalysts for the oxygen reduction. International Journal of Hydrogen Energy, 2022, 47, 17611-17620.          | 3.8 | 1         |
| 8  | Mechanochemical-Driven Uniformly Dispersed Monatomic Fe–N <sub><i>x</i></sub> Coordination in<br>Carbon for Facilitating Efficient Oxygen Reduction Reaction. ACS Sustainable Chemistry and<br>Engineering, 2022, 10, 7553-7563.        | 3.2 | 11        |
| 9  | Enhanced oxygen reduction reaction activity by utilizing carbon nanotube intramolecular junctions.<br>Computational and Theoretical Chemistry, 2022, 1214, 113765.                                                                      | 1.1 | 1         |
| 10 | Screening of transition metal doped two-dimensional C2N (TM-C2N) as high-performance catalyst for the non-oxidative propane dehydrogenation. Molecular Catalysis, 2022, 528, 112501.                                                    | 1.0 | 3         |
| 11 | First-principles investigation of methanol synthesis from CO2 hydrogenation on Cu@Pd core–shell surface. Journal of Materials Science, 2021, 56, 3790-3803.                                                                             | 1.7 | 10        |
| 12 | Ultra-smooth CsPbI2Br film via programmable crystallization process for high-efficiency inorganic perovskite solar cells. Journal of Materials Science and Technology, 2021, 66, 150-156.                                               | 5.6 | 12        |
| 13 | Self-synergistic cobalt catalysts with symbiotic metal single-atoms and nanoparticles for efficient oxygen reduction. Journal of Materials Chemistry A, 2021, 9, 1127-1133.                                                             | 5.2 | 21        |
| 14 | Synthesis of Salicylhydrazone Probe with High Selectivity and Rapid Detection Cu2+ and Its<br>Application in Logic Gate and Adsorption. Chinese Journal of Organic Chemistry, 2021, 41, 2839.                                           | 0.6 | 4         |
| 15 | Mechanisms of fullerene and single-walled carbon nanotube composite as the metal-free<br>multifunctional electrocatalyst for the oxygen reduction, oxygen evolution, and hydrogen<br>evolution. Molecular Catalysis, 2021, 502, 111383. | 1.0 | 16        |
| 16 | Probing the catalytic activity of M-N4â^'xOx embedded graphene for the oxygen reduction reaction by density functional theory. Frontiers of Chemical Science and Engineering, 2021, 15, 1206-1216.                                      | 2.3 | 38        |
| 17 | Density functional theory study of the sulfur/oxygen doped CoN4-graphene electrocatalyst for oxygen reduction reaction. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2021, 615, 126219.                            | 2.3 | 15        |
| 18 | High mass-specific reactivity of a defect-enriched Ru electrocatalyst for hydrogen evolution in harsh<br>alkaline and acidic media. Science China Materials, 2021, 64, 2467-2476.                                                       | 3.5 | 16        |

| #  | Article                                                                                                                                                                                                                                                                 | IF            | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------|-----------|
| 19 | Identification of the Active Sites of NiCo <sub>2</sub> O <sub>4</sub> and the Support Effect with Carbon Nanotubes for Oxygen Reduction Catalysis. Langmuir, 2021, 37, 6330-6336.                                                                                      | 1.6           | 21        |
| 20 | Iron-zinc bimetal embedded N-doped graphene for the oxygen reduction reaction catalysis: A density functional theory study. Diamond and Related Materials, 2021, 116, 108431.                                                                                           | 1.8           | 8         |
| 21 | PdZn bimetallic nanoparticles for CO2 hydrogenation to methanol: Performance and mechanism.<br>Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2021, 622, 126723.                                                                                     | 2.3           | 12        |
| 22 | DFT study of C2N-supported Ag3M (MÂ=ÂCu, Pd, and Pt) clusters as potential oxygen reduction reaction<br>catalysts. Chemical Engineering Science, 2021, 239, 116642.                                                                                                     | 1.9           | 18        |
| 23 | Theoretical study on the synthesis of methane by CO2 hydrogenation on Ni3Fe(111) surface. Journal of<br>Natural Gas Science and Engineering, 2021, 94, 104114.                                                                                                          | 2.1           | 11        |
| 24 | Pristine inorganic nickel oxide as desirable hole transporting material for efficient quasi<br>two-dimensional perovskite solar cells. Journal of Power Sources, 2021, 512, 230452.                                                                                     | 4.0           | 9         |
| 25 | Transition metal doped graphene-like germanium carbide: Screening of high performance<br>electrocatalysts for oxygen reduction, oxygen evolution, or hydrogen evolution. Colloids and<br>Surfaces A: Physicochemical and Engineering Aspects, 2021, 630, 127628.        | 2.3           | 17        |
| 26 | Cobaltâ€based coordination polymer as high activity electrocatalyst for oxygen reduction reaction:<br>Catalysis by novel active site CoO 4 N 2. International Journal of Energy Research, 2020, 44, 2164-2172.                                                          | 2.2           | 9         |
| 27 | Modifications of Metal and Ligand to Modulate the Oxygen Reduction Reaction Activity of<br>Two-Dimensional MOF Catalysts. Journal of Physical Chemistry C, 2020, 124, 1413-1420.                                                                                        | 1.5           | 34        |
| 28 | A Novel 2-Phenyl-1,2,3-Triazole Derived Fluorescent Probe for Recyclable Detection of Al3+ in Aqueous<br>Medium and Its Application. Russian Journal of Bioorganic Chemistry, 2020, 46, 627-641.                                                                        | 0.3           | 3         |
| 29 | DFT study of CO2 catalytic conversion by H2 over Ni13 cluster. Journal of Chemical Sciences, 2020, 132, 1.                                                                                                                                                              | 0.7           | 10        |
| 30 | Transition metal atom doped C2N as catalyst for the oxygen reduction reaction: A density functional theory study. International Journal of Hydrogen Energy, 2020, 45, 27202-27209.                                                                                      | 3.8           | 32        |
| 31 | Cotton pad-derived large-area 3D N-doped graphene-like full carbon cathode with an O-rich functional group for flexible all solid Zn–air batteries. Journal of Materials Chemistry A, 2020, 8, 11202-11209.                                                             | 5.2           | 42        |
| 32 | Endohedral metallofullerenes Mn@C60 (M = Mn, Co, Ni, Cu; n = 2–5) as electrocatalysts for<br>reduction reaction: a first-principles study. Journal of Materials Science, 2020, 55, 11382-11390.                                                                         | oxygen<br>1.7 | 17        |
| 33 | Probing the Catalytic Activity and Poisoning-Tolerance Ability of Endohedral Metallofullerene<br>Fe <sub> <i>n</i> </sub> @C <sub>60</sub> ( <i>n</i> = 1â^7) Catalysts in the Oxygen Reduction Reaction.<br>Journal of the Electrochemical Society, 2020, 167, 024515. | 1.3           | 6         |
| 34 | Novel triphenylamine-based polyamides: Efficient preparation via benzoxazine-isocyanide-chemistry at<br>room temperature and electrochromic properties investigation. Dyes and Pigments, 2020, 176, 108206.                                                             | 2.0           | 17        |
| 35 | Indiscrete metal/metal-N-C synergic active sites for efficient and durable oxygen electrocatalysis<br>toward advanced Zn-air batteries. Applied Catalysis B: Environmental, 2020, 272, 118967.                                                                          | 10.8          | 110       |
| 36 | N, O Co-Doped Graphene as a Potential Catalyst for the Oxygen Reduction Reaction. Journal of the<br>Electrochemical Society, 2019, 166, F847-F851.                                                                                                                      | 1.3           | 19        |

| #  | Article                                                                                                                                                                                                                                    | lF   | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 37 | Exploring the catalytic activity of metalâ€fullerene C <sub>58</sub> M (M = Mn, Fe, Co, Ni, and Cu)<br>toward oxygen reduction and CO oxidation by density functional theory. International Journal of<br>Energy Research, 2019, 43, 7375. | 2.2  | 14        |
| 38 | The effect of GGA functionals on the oxygen reduction reaction catalyzed by Pt(111) and FeN4 doped graphene. Journal of Molecular Modeling, 2019, 25, 180.                                                                                 | 0.8  | 6         |
| 39 | DFT-based study of single transition metal atom doped g-C3N4 as alternative oxygen reduction reaction catalysts. International Journal of Hydrogen Energy, 2019, 44, 15409-15416.                                                          | 3.8  | 99        |
| 40 | N-, P-, and S-doped graphene-like carbon catalysts derived from onium salts with enhanced oxygen chemisorption for Zn-air battery cathodes. Applied Catalysis B: Environmental, 2019, 241, 442-451.                                        | 10.8 | 284       |
| 41 | DFT study of the two dimensional metal–organic frameworks X3(HITP)2 as the cathode electrocatalysts for fuel cell. Applied Surface Science, 2019, 471, 256-262.                                                                            | 3.1  | 43        |
| 42 | Application of DFT Methods to Investigate Activity and Stability of Oxygen Reduction Reaction Electrocatalysts. , 2018, , 337-358.                                                                                                         |      | 0         |
| 43 | DFT Prediction of the Catalytic Oxygen Reduction Activity and Poisoning-Tolerance Ability on a Class of Fe/S/C Catalysts. Journal of the Electrochemical Society, 2018, 165, F334-F337.                                                    | 1.3  | 18        |
| 44 | Comb-shaped polyzwitterion with surface-activity obtained <i>via N</i> -maleoyl chitosan-modified HPAM for displacement of residual oil. New Journal of Chemistry, 2018, 42, 6848-6857.                                                    | 1.4  | 9         |
| 45 | Isocyano-functionalized, 1,8-naphthalimide-based chromophore as efficient ratiometric fluorescence probe for Hg2+ in aqueous medium. Sensors and Actuators B: Chemical, 2018, 255, 3074-3084.                                              | 4.0  | 27        |
| 46 | Probing the activity of pure and N-doped fullerenes towards oxygen reduction reaction by density functional theory. Carbon, 2018, 126, 53-57.                                                                                              | 5.4  | 76        |
| 47 | Particle size effect of Ag catalyst for oxygen reduction reaction: Activity and stability. Journal of<br>Renewable and Sustainable Energy, 2018, 10, 054301.                                                                               | 0.8  | 8         |
| 48 | Catalytic performance of M@Ni (M = Fe, Ru, Ir) coreâ^'shell nanoparticles towards ammonia<br>decomposition for COx-free hydrogen production. Journal of Nanoparticle Research, 2018, 20, 1.                                                | 0.8  | 11        |
| 49 | Transformation of H-Aggregates and J-Dimers of Water-Soluble Tetrakis (4-carboxyphenyl) Porphyrin<br>in Polyion Complex Micelles. Polymers, 2018, 10, 494.                                                                                 | 2.0  | 12        |
| 50 | Cobalt or Nickel Doped SiC Nanocages as Efficient Electrocatalyst for Oxygen Reduction Reaction: A<br>Computational Prediction. Journal of the Electrochemical Society, 2017, 164, F616-F619.                                              | 1.3  | 47        |
| 51 | Soluble graphene composite with aggregation-induced emission feature: non-covalent<br>functionalization and application in explosive detection. Journal of Materials Chemistry C, 2017, 5,<br>6216-6223.                                   | 2.7  | 18        |
| 52 | Oxygen reduction reaction on Ni 3 (HITP) 2 : A catalytic site that leads to high activity.<br>Electrochemistry Communications, 2017, 82, 89-92.                                                                                            | 2.3  | 50        |
| 53 | Nanoscale size effect of octahedral nickel catalyst towards ammonia decomposition reaction.<br>International Journal of Hydrogen Energy, 2017, 42, 17122-17128.                                                                            | 3.8  | 14        |
| 54 | Probing the activity of Ni13, Cu13, and Ni12Cu clusters towards the ammonia decomposition reaction by density functional theory. Journal of Materials Science, 2017, 52, 3162-3168.                                                        | 1.7  | 17        |

| #  | Article                                                                                                                                                                                                                                    | IF  | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 55 | DFT Study of the Oxygen Reduction Reaction Activity on Feâ^'N4-Patched Carbon Nanotubes: The<br>Influence of the Diameter and Length. Materials, 2017, 10, 549.                                                                            | 1.3 | 18        |
| 56 | Germanium Nanotube as the Catalyst for Oxygen Reduction Reaction: Performance and Mechanism.<br>Acta Chimica Sinica, 2017, 75, 189.                                                                                                        | 0.5 | 1         |
| 57 | Adsorption of naphthenic acids to the nitrogen-coordinated transition-metal embedded graphene: A<br>DFT study. Russian Journal of Physical Chemistry B, 2016, 10, 1027-1031.                                                               | 0.2 | 8         |
| 58 | Boron Nitride Nanocages as High Activity Electrocatalysts for Oxygen Reduction Reaction: Synergistic<br>Catalysis by Dual Active Sites. Journal of Physical Chemistry C, 2016, 120, 28912-28916.                                           | 1.5 | 41        |
| 59 | An aggregation-induced emission enhancement fluorescent benzoxazine-derived macromolecule:<br>catalyst-free synthesis and its preliminary application for the determination of aqueous picric acid.<br>RSC Advances, 2016, 6, 41340-41347. | 1.7 | 10        |
| 60 | Screening of catalytic oxygen reduction reaction activity of metal-doped graphene by density functional theory. Applied Surface Science, 2016, 379, 291-295.                                                                               | 3.1 | 81        |
| 61 | The role of chelating ligands and central metals in the oxygen reduction reaction activity: a DFT study. Russian Journal of Electrochemistry, 2016, 52, 555-559.                                                                           | 0.3 | 2         |
| 62 | A comparative DFT study of oxygen reduction reaction on mononuclear and binuclear cobalt and iron phthalocyanines. Russian Journal of Physical Chemistry A, 2016, 90, 2413-2417.                                                           | 0.1 | 14        |
| 63 | Benzylidenecyclohexanone-triazole-based conjugated polymer: Click synthesis, Staudinger end-capping and application as optical probe scaffold. Dyes and Pigments, 2016, 133, 406-414.                                                      | 2.0 | 4         |
| 64 | Oxygen reduction reaction on cobalt–(n)pyrrole clusters from DFT studies. RSC Advances, 2016, 6,<br>5535-5540.                                                                                                                             | 1.7 | 9         |
| 65 | Simple-structured, hydrazinecarbothioamide derivatived dual-channel optical probe for Hg2+ and Ag+.<br>Journal of Luminescence, 2016, 174, 56-62.                                                                                          | 1.5 | 39        |
| 66 | Catalytic performance and mechanism of N-CoTi@CoTiO 3 catalysts for oxygen reduction reaction. Nano Energy, 2016, 20, 134-143.                                                                                                             | 8.2 | 33        |
| 67 | Diphenylphosphorylâ€Triazoleâ€Tethered, AIEEâ€Type Conjugated Polymer as Optical Probe for Silver Ion in<br>Relatively Highâ€Waterâ€Fraction Medium. Macromolecular Chemistry and Physics, 2015, 216, 2263-2269.                           | 1.1 | 4         |
| 68 | Origins for the Synergetic Effects of AuCu <sub>3</sub> in Catalysis for Oxygen Reduction Reaction.<br>Journal of Physical Chemistry C, 2015, 119, 907-912.                                                                                | 1.5 | 13        |
| 69 | Enhanced electrocatalytic performance for methanol oxidation with a Magnéli phase molybdenum<br>oxide/Pt-black composite. Journal of Molecular Catalysis A, 2015, 400, 7-13.                                                               | 4.8 | 12        |
| 70 | Why Do Boron and Nitrogen Doped α- and γ-Graphyne Exhibit Different Oxygen Reduction Mechanism? A<br>First-Principles Study. Journal of Physical Chemistry C, 2015, 119, 11493-11498.                                                      | 1.5 | 77        |
| 71 | Graphyne nanotubes as electrocatalysts for oxygen reduction reaction: the effect of doping elements on the catalytic mechanisms. Physical Chemistry Chemical Physics, 2015, 17, 29340-29343.                                               | 1.3 | 62        |
| 72 | Theoretical evaluation of corrosion inhibition performance of three antipyrine compounds.<br>Computational and Theoretical Chemistry, 2015, 1072, 7-14.                                                                                    | 1.1 | 95        |

| #  | Article                                                                                                                                                                       | IF  | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 73 | Electrocatalytic Dechlorination of Atrazine Using Binuclear Iron Phthalocyanine as Electrocatalysts.<br>Electrocatalysis, 2014, 5, 68-74.                                     | 1.5 | 20        |
| 74 | Nanoâ€intermetallic AuCu <sub>3</sub> Catalyst for Oxygen Reduction Reaction: Performance and<br>Mechanism. Small, 2014, 10, 2662-2669.                                       | 5.2 | 54        |
| 75 | A novel CoN electrocatalyst with high activity and stability toward oxygen reduction reaction.<br>Journal of Materials Chemistry A, 2014, 2, 62-65.                           | 5.2 | 55        |
| 76 | Mechanism of oxygen reduction reaction catalyzed by Fe(Co)–Nx/C. Physical Chemistry Chemical Physics, 2013, 15, 19330.                                                        | 1.3 | 55        |
| 77 | The Interactions of Oxygen with Small Gold Clusters on Nitrogen-Doped Graphene. Molecules, 2013, 18, 3279-3291.                                                               | 1.7 | 17        |
| 78 | Durability Enhancement of Intermetallics Electrocatalysts via N-anchor Effect for Fuel Cells.<br>Scientific Reports, 2013, 3, 3234.                                           | 1.6 | 29        |
| 79 | Density Functional Theory Study of the Oxygen Reduction Reaction on a Cobalt–Polypyrrole<br>Composite Catalyst. Journal of Physical Chemistry C, 2012, 116, 12553-12558.      | 1.5 | 35        |
| 80 | DFT Study of Polyaniline and Metal Composites as Nonprecious Metal Catalysts for Oxygen Reduction in Fuel Cells. Journal of Physical Chemistry C, 2012, 116, 22737-22742.     | 1.5 | 39        |
| 81 | What Differs on the Enzymatic Acetylation Mechanisms for Arylamines and Arylhydrazines Substrates?<br>A Theoretical Study. Research Letters in Biochemistry, 2009, 2009, 1-5. | 0.0 | 0         |
| 82 | Investigation on the Scavenging Mechanism of 1,4â€Dicarbonyls by Pyridoxamine: A Density Functional<br>Theory Study. Chinese Journal of Chemistry, 2009, 27, 1452-1458.       | 2.6 | 1         |
| 83 | Theoretical study of the scavenging mechanism to 1,4-dicarbonyls by pyridoxamine: The water-assisted reaction. Computational and Theoretical Chemistry, 2009, 911, 70-74      | 1.5 | 4         |