Xiaofei Yang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4846294/publications.pdf

Version: 2024-02-01

17405 24179 13,188 166 63 110 citations h-index g-index papers 172 172 172 12635 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Efficient Harmonic Neural Networks With Compound Discrete Cosine Transform Filters and Shared Reconstruction Filters. IEEE Transactions on Neural Networks and Learning Systems, 2024, 35, 693-707.	7.2	O
2	Pd nanoparticles embedded in N-Enriched MOF-Derived architectures for efficient oxygen reduction reaction in alkaline media. Green Energy and Environment, 2023, 8, 1205-1215.	4.7	5
3	Mako: A Graph-based Pattern Growth Approach to Detect Complex Structural Variants. Genomics, Proteomics and Bioinformatics, 2022, 20, 205-218.	3.0	6
4	High-quality Arabidopsis thaliana Genome Assembly with Nanopore and HiFi Long Reads. Genomics, Proteomics and Bioinformatics, 2022, 20, 4-13.	3.0	80
5	Coupling solar-driven photothermal effect into photocatalysis for sustainable water treatment. Journal of Hazardous Materials, 2022, 423, 127128.	6.5	106
6	Integrated reduced graphene oxide/polypyrrole hybrid aerogels for simultaneous photocatalytic decontamination and water evaporation. Applied Catalysis B: Environmental, 2022, 301, 120820.	10.8	98
7	GCDB-UNet: A novel robust cloud detection approach for remote sensing images. Knowledge-Based Systems, 2022, 238, 107890.	4.0	23
8	Platelet Distribution Width: A Significant Predictor of Poor Outcome After Mechanical Thrombectomy. Journal of Stroke and Cerebrovascular Diseases, 2022, 31, 106273.	0.7	1
9	Facile regeneration of oxidized porous carbon nitride rods by the de-aromatization of the heptazine network in bulk g-C ₃ N ₄ . Inorganic Chemistry Frontiers, 2022, 9, 1107-1114.	3.0	9
10	A global survey of the transcriptome of the opium poppy (<i>Papaver somniferum</i>) based on singleâ€molecule longâ€read isoform sequencing. Plant Journal, 2022, 110, 607-620.	2.8	5
11	JAX-CNV: A Whole-genome Sequencing-based Algorithm for Copy Number Detection at Clinical Grade Level. Genomics, Proteomics and Bioinformatics, 2022, 20, 1197-1206.	3.0	3
12	Ultrahigh photocatalytic hydrogen evolution performance of coupled 1D CdS/1T-phase dominated 2D WS2 nanoheterojunctions. Chinese Journal of Catalysis, 2022, 43, 403-409.	6.9	40
13	Design and performance boost of a MOF-functionalized-wood solar evaporator through tuning the hydrogen-bonding interactions. Nano Energy, 2022, 95, 107016.	8.2	148
14	Hierarchical AgAu alloy nanostructures for highly efficient electrocatalytic ethanol oxidation. Chinese Journal of Catalysis, 2022, 43, 851-861.	6.9	13
15	Integrating bulk and single ell RNA sequencing reveals cellular heterogeneity and immune infiltration in hepatocellular carcinoma. Molecular Oncology, 2022, 16, 2195-2213.	2.1	16
16	IAGS: Inferring Ancestor Genome Structure under a Wide Range of Evolutionary Scenarios. Molecular Biology and Evolution, 2022, 39, .	3.5	5
17	Cellular heterogeneity and transcriptomic profiles during intrahepatic cholangiocarcinoma initiation and progression. Hepatology, 2022, 76, 1302-1317.	3.6	13
18	Haplotype-resolved Chinese male genome assembly based on high-fidelity sequencing. Fundamental Research, 2022, 2, 946-953.	1.6	11

#	Article	IF	CITATIONS
19	NIRâ€lâ€Responsive Singleâ€Band Upconversion Emission through Energy Migration in Core–Shell–Shell Nanostructures. Angewandte Chemie - International Edition, 2022, 61, .	7.2	22
20	NIRâ€Iâ€Responsive Singleâ€Band Upconversion Emission through Energy Migration in Core–Shell–Shell Nanostructures. Angewandte Chemie, 2022, 134, .	1.6	6
21	Hyperspectral Image Transformer Classification Networks. IEEE Transactions on Geoscience and Remote Sensing, 2022, 60, 1-15.	2.7	64
22	Synthesis of two-dimensional ultrathin photocatalytic materials towards a more sustainable environment. Green Chemistry, 2022, 24, 4728-4741.	4.6	13
23	LWCDnet: A Lightweight Network for Efficient Cloud Detection in Remote Sensing Images. IEEE Transactions on Geoscience and Remote Sensing, 2022, 60, 1-16.	2.7	11
24	Integrating a Metal–Organic Framework into Natural Spruce Wood for Efficient Solarâ€Powered Water Evaporation. Solar Rrl, 2022, 6, .	3.1	13
25	More from less: improving solar steam generation by selectively removing a portion of evaporation surface. Science Bulletin, 2022, 67, 1572-1580.	4.3	122
26	In situ construction of protonated g-C3N4/Ti3C2 MXene Schottky heterojunctions for efficient photocatalytic hydrogen production. Chinese Journal of Catalysis, 2021, 42, 107-114.	6.9	154
27	Ligninâ€Incorporated Supramolecular Copolymerization Yielding g ₃ N ₄ Nanoarchitectures for Efficient Photocatalytic Hydrogen Evolution. Solar Rrl, 2021, 5, 2000486.	3.1	46
28	Same materials, bigger output: A reversibly transformable 2D–3D photothermal evaporator for highly efficient solar steam generation. Nano Energy, 2021, 79, 105477.	8.2	228
29	Mechanistic insights into the catalytic reduction of nitrophenols on noble metal nanoparticles/N-doped carbon black composites. Composites Communications, 2021, 23, 100580.	3.3	17
30	Controllable synthesis of grain boundary-enriched Pt nanoworms decorated on graphitic carbon nanosheets for ultrahigh methanol oxidation catalytic activity. Journal of Energy Chemistry, 2021, 57, 601-609.	7.1	106
31	Evidencing Interfacial Charge Transfer in 2D CdS/2D MXene Schottky Heterojunctions toward Highâ€Efficiency Photocatalytic Hydrogen Production. Solar Rrl, 2021, 5, 2000414.	3.1	83
32	Heterostructured MoSe ₂ /Oxygen-Terminated Ti ₃ C ₂ MXene Architectures for Efficient Electrocatalytic Hydrogen Evolution. Energy & Samp; Fuels, 2021, 35, 4609-4615.	2.5	76
33	Haplotype-resolved diverse human genomes and integrated analysis of structural variation. Science, 2021, 372, .	6.0	358
34	Modulation of Volmer step for efficient alkaline water splitting implemented by titanium oxide promoting surface reconstruction of cobalt carbonate hydroxide. Nano Energy, 2021, 82, 105732.	8.2	53
35	Temperature-dependent synthesis of MOF-derived Co@N-doped carbon nanotube nanocomposites toward accelerated reduction of 4-nitrophenol. Composites Communications, 2021, 25, 100718.	3.3	16
36	Surface Patterning of Two-Dimensional Nanostructure-Embedded Photothermal Hydrogels for High-Yield Solar Steam Generation. ACS Nano, 2021, 15, 10366-10376.	7.3	230

3

#	Article	IF	Citations
37	Dualâ€Zone Photothermal Evaporator for Antisalt Accumulation and Highly Efficient Solar Steam Generation. Advanced Functional Materials, 2021, 31, 2102618.	7.8	226
38	Uncovering the origin of full-spectrum visible-light-responsive polypyrrole supramolecular photocatalysts. Applied Catalysis B: Environmental, 2021, 287, 119926.	10.8	59
39	Architecting a bifunctional solar evaporator of perovskite La0.5Sr0.5CoO3 for solar evaporation and degradation. Journal of Materials Science, 2021, 56, 18625-18635.	1.7	7
40	Mixed-dimensional 1D CdS/2D MoSe2 heterostructures for high-performance photocatalytic hydrogen production. Surfaces and Interfaces, 2021, 25, 101192.	1.5	7
41	Nanocarbon encapsulating Ni-doped MoP/graphene composites for highly improved electrocatalytic hydrogen evolution reaction. Composites Communications, 2021, 26, 100792.	3.3	38
42	Enhancing solar steam generation using a highly thermally conductive evaporator support. Science Bulletin, 2021, 66, 2479-2488.	4.3	159
43	Synergy of photocatalysis and photothermal effect in integrated 0D perovskite oxide/2D MXene heterostructures for simultaneous water purification and solar steam generation. Applied Catalysis B: Environmental, 2021, 295, 120285.	10.8	162
44	Advances and Promises of 2D MXenes as Cocatalysts for Artificial Photosynthesis. Solar Rrl, 2021, 5, 2100603.	3.1	22
45	Three chromosome-scale Papaver genomes reveal punctuated patchwork evolution of the morphinan and noscapine biosynthesis pathway. Nature Communications, 2021, 12, 6030.	5.8	51
46	In situ fabrication of 1D CdS nanorod/2D Ti3C2 MXene nanosheet Schottky heterojunction toward enhanced photocatalytic hydrogen evolution. Applied Catalysis B: Environmental, 2020, 268, 118382.	10.8	429
47	Sacrificial Agentâ€Free Photocatalytic Oxygen Evolution from Water Splitting over Ag ₃ PO ₄ /MXene Hybrids. Solar Rrl, 2020, 4, 1900434.	3.1	45
48	Hierarchical ultrathin carbon encapsulating transition metal doped MoP electrocatalysts for efficient and pH-universal hydrogen evolution reaction. Nano Energy, 2020, 70, 104445.	8.2	118
49	Anchoring Co3O4 nanoparticles on MXene for efficient electrocatalytic oxygen evolution. Science Bulletin, 2020, 65, 460-466.	4.3	152
50	Revealing and accelerating interfacial charge carrier dynamics in Z-scheme heterojunctions for highly efficient photocatalytic oxygen evolution. Applied Catalysis B: Environmental, 2020, 268, 118445.	10.8	69
51	Energy Manipulation in Lanthanideâ€Doped Core–Shell Nanoparticles for Tunable Dualâ€Mode Luminescence toward Advanced Antiâ€Counterfeiting. Advanced Materials, 2020, 32, e2002121.	11.1	165
52	Predicting the early risk of ophthalmopathy in Graves' disease patients using TCR repertoire. Clinical and Translational Medicine, 2020, 10, e218.	1.7	2
53	gCAnno: a graph-based single cell type annotation method. BMC Genomics, 2020, 21, 823.	1.2	0
54	Reversing heat conduction loss: Extracting energy from bulk water to enhance solar steam generation. Nano Energy, 2020, 78, 105269.	8.2	215

#	Article	IF	CITATIONS
55	Mechanistic insights into charge carrier dynamics in MoSe2/CdS heterojunctions for boosted photocatalytic hydrogen evolution. Materials Today Physics, 2020, 15, 100261.	2.9	23
56	Turning Trash into Treasure: Pencil Waste–Derived Materials for Solarâ€Powered Water Evaporation. Energy Technology, 2020, 8, 2000567.	1.8	22
57	Transportation, germs, culture: a dynamic graph model of COVIDâ€19 outbreak. Quantitative Biology, 2020, 8, 238-244.	0.3	4
58	Stackable nickel–cobalt@polydopamine nanosheet based photothermal sponges for highly efficient solar steam generation. Journal of Materials Chemistry A, 2020, 8, 11665-11673.	5.2	184
59	Recent Advances in Conjugated Polymers for Visibleâ€Lightâ€Driven Water Splitting. Advanced Materials, 2020, 32, e1907296.	11.1	279
60	Implementing Hybrid Energy Harvesting in 3D Spherical Evaporator for Solar Steam Generation and Synergic Water Purification. Solar Rrl, 2020, 4, 2000232.	3.1	84
61	MSIsensor-pro: Fast, Accurate, and Matched-normal-sample-free Detection of Microsatellite Instability. Genomics, Proteomics and Bioinformatics, 2020, 18, 65-71.	3.0	53
62	Near-Complete Suppression of Oxygen Evolution for Photoelectrochemical H ₂ O Oxidative H ₂ O ₂ Synthesis. Journal of the American Chemical Society, 2020, 142, 8641-8648.	6.6	168
63	Biomass derived Janus solar evaporator for synergic water evaporation and purification. Sustainable Materials and Technologies, 2020, 25, e00180.	1.7	58
64	Recent advances in MXenes supported semiconductors based photocatalysts: Properties, synthesis and photocatalytic applications. Journal of Industrial and Engineering Chemistry, 2020, 85, 1-33.	2.9	107
65	Boosting solar steam generation by structure enhanced energy management. Science Bulletin, 2020, 65, 1380-1388.	4.3	184
66	Additives Control the Stability of Amorphous Calcium Carbonate via Two Different Mechanisms: Surface Adsorption versus Bulk Incorporation. Advanced Functional Materials, 2020, 30, 2000003.	7.8	49
67	Activation of graphitic carbon nitride by solvent-mediated supramolecular assembly for enhanced hydrogen evolution. Applied Surface Science, 2020, 525, 146444.	3.1	20
68	Porous Ni5P4 as a promising cocatalyst for boosting the photocatalytic hydrogen evolution reaction performance. Applied Catalysis B: Environmental, 2020, 275, 119144.	10.8	194
69	Nickel-Based Metal-Organic Framework-Derived Bifunctional Electrocatalysts for Hydrogen and Oxygen Evolution Reactions. Wuli Huaxue Xuebao/ Acta Physico - Chimica Sinica, 2020, .	2.2	9
70	Fabrication of dual direct Z-scheme g-C3N4/MoS2/Ag3PO4 photocatalyst and its oxygen evolution performance. Applied Surface Science, 2019, 463, 9-17.	3.1	145
71	Reversible Switching of the Amphiphilicity of Organic–Inorganic Hybrids by Adsorption–Desorption Manipulation. Journal of Physical Chemistry C, 2019, 123, 21097-21102.	1.5	1
72	MEpurity: estimating tumor purity using DNA methylation data. Bioinformatics, 2019, 35, 5298-5300.	1.8	8

#	Article	IF	CITATIONS
73	Unveiling the Origin of the High Catalytic Activity of Ultrathin 1T/2H MoSe ₂ Nanosheets for the Hydrogen Evolution Reaction: A Combined Experimental and Theoretical Study. ChemSusChem, 2019, 12, 5015-5022.	3.6	48
74	Topochemical pyrolytic synthesis of quasi-Mxene hybrids via ionic liquid-iron phthalocyanine as a self-template. Chemical Communications, 2019, 55, 771-774.	2.2	4
75	Constructing 0D FeP Nanodots/2D g 3 N 4 Nanosheets Heterojunction for Highly Improved Photocatalytic Hydrogen Evolution. ChemCatChem, 2019, 11, 6310-6315.	1.8	33
76	Metal-Oxide-Mediated Subtractive Manufacturing of Two-Dimensional Carbon Nitride for High-Efficiency and High-Yield Photocatalytic H ₂ Evolution. ACS Nano, 2019, 13, 11294-11302.	7.3	109
77	Fabrication of doped SmBaCo2O5+δ double perovskites for enhanced solar-driven interfacial evaporation. Ceramics International, 2019, 45, 24903-24908.	2.3	20
78	One reference genome is not enough. Genome Biology, 2019, 20, 104.	3.8	58
79	Probing supramolecular assembly and charge carrier dynamics toward enhanced photocatalytic hydrogen evolution in 2D graphitic carbon nitride nanosheets. Applied Catalysis B: Environmental, 2019, 256, 117867.	10.8	137
80	Oxamide-modified g-C3N4 nanostructures: Tailoring surface topography for high-performance visible light photocatalysis. Chemical Engineering Journal, 2019, 374, 1064-1075.	6.6	218
81	Porous nitrogen-rich g-C3N4 nanotubes for efficient photocatalytic CO2 reduction. Applied Catalysis B: Environmental, 2019, 256, 117854.	10.8	271
82	Self-assembled g-C3N4 nanoarchitectures with boosted photocatalytic solar-to-hydrogen efficiency. Applied Surface Science, 2019, 487, 59-67.	3.1	57
83	Road Detection and Centerline Extraction Via Deep Recurrent Convolutional Neural Network U-Net. IEEE Transactions on Geoscience and Remote Sensing, 2019, 57, 7209-7220.	2.7	138
84	PVTree: A Sequential Pattern Mining Method for Alignment Independent Phylogeny Reconstruction. Genes, 2019, 10, 73.	1.0	6
85	Accelerating photocatalytic hydrogen evolution and pollutant degradation by coupling organic co-catalysts with TiO2. Chinese Journal of Catalysis, 2019, 40, 380-389.	6.9	105
86	Remarkable Enhancement in Solar Oxygen Evolution from MoSe ₂ /Ag ₃ PO ₄ Heterojunction Photocatalyst via In Situ Constructing Interfacial Contact. ACS Sustainable Chemistry and Engineering, 2019, 7, 8466-8474.	3.2	92
87	Unveiling the origin of boosted photocatalytic hydrogen evolution in simultaneously (S, P,) Tj ETQq1 1 0.78431484-94.	10.8 rgBT	erlock 10 Tf 300
88	Surface engineering of ultrasmall supported PdxBi nanoalloys with enhanced electrocatalytic activity for selective alcohol oxidation. Chemical Communications, 2019, 55, 13566-13569.	2.2	12
89	Interfacial optimization of g-C3N4-based Z-scheme heterojunction toward synergistic enhancement of solar-driven photocatalytic oxygen evolution. Applied Catalysis B: Environmental, 2019, 244, 240-249.	10.8	295
90	Hyperspectral Image Classification With Deep Learning Models. IEEE Transactions on Geoscience and Remote Sensing, 2018, 56, 5408-5423.	2.7	318

#	Article	IF	Citations
91	3D reduced graphene oxide aerogel-mediated Z-scheme photocatalytic system for highly efficient solar-driven water oxidation and removal of antibiotics. Applied Catalysis B: Environmental, 2018, 232, 562-573.	10.8	231
92	Fabrication of modified g-C 3 N 4 nanorod/Ag 3 PO 4 nanocomposites for solar-driven photocatalytic oxygen evolution from water splitting. Applied Surface Science, 2018, 430, 301-308.	3.1	92
93	Solar photocatalytic water oxidation over Ag 3 PO 4 $/g$ -C 3 N 4 composite materials mediated by metallic Ag and graphene. Applied Surface Science, 2018, 430, 108-115.	3.1	89
94	Carbon Nanotube with Vertical 2D Molybdenum Sulphoselenide Nanosheet Arrays for Boosting Electrocatalytic Hydrogen Evolution. ACS Applied Energy Materials, 2018, 1, 7035-7045.	2.5	32
95	The opium poppy genome and morphinan production. Science, 2018, 362, 343-347.	6.0	225
96	Split-Read Indel and Structural Variant Calling Using PINDEL. Methods in Molecular Biology, 2018, 1833, 95-105.	0.4	20
97	Intrinsic Lattice Relationship of Catalyst/Nanowire Interfaces by Heating High-Resolution Transmission Electron Microscopy. Crystal Growth and Design, 2018, 18, 4911-4919.	1.4	5
98	Insights Into Highly Improved Solar-Driven Photocatalytic Oxygen Evolution Over Integrated Ag3PO4/MoS2 Heterostructures. Frontiers in Chemistry, 2018, 6, 123.	1.8	19
99	Porous MoP network structure as co-catalyst for H2 evolution over g-C3N4 nanosheets. Applied Surface Science, 2018, 462, 822-830.	3.1	120
100	Anchoring metal-organic framework nanoparticles on graphitic carbon nitrides for solar-driven photocatalytic hydrogen evolution. Applied Surface Science, 2018, 455, 403-409.	3.1	108
101	Dual Z-scheme g-C3N4/Ag3PO4/Ag2MoO4 ternary composite photocatalyst for solar oxygen evolution from water splitting. Applied Surface Science, 2018, 456, 369-378.	3.1	196
102	Discovering DNA methylation patterns for long non-coding RNAs associated with cancer subtypes. Computational Biology and Chemistry, 2017, 69, 164-170.	1.1	27
103	From Millimeter to Subnanometer: Vapor–Solid Deposition of Carbon Nitride Hierarchical Nanostructures Directed by Supramolecular Assembly. Angewandte Chemie - International Edition, 2017, 56, 8426-8430.	7.2	90
104	Synthesis and organogelating behaviour of amino acid-functionalised triphenylenes. Soft Matter, 2017, 13, 5922-5932.	1.2	3
105	Construction of carbon nitride and MoS2 quantum dot 2D/OD hybrid photocatalyst: Direct Z-scheme mechanism for improved photocatalytic activity. Chinese Journal of Catalysis, 2017, 38, 2160-2170.	6.9	165
106	Solvent-induced controllable synthesis of recyclable Ag2CO3 catalysts with enhanced visible light photocatalytic activity. Ceramics International, 2016, 42, 13411-13420.	2.3	13
107	Detection of driver pathways using mutated gene network in cancer. Molecular BioSystems, 2016, 12, 2135-2141.	2.9	9
108	Comparative DNA methylation analysis to decipher common and cell type-specific patterns among multiple cell types. Briefings in Functional Genomics, 2016, 15, elw013.	1.3	10

#	Article	IF	Citations
109	Disclosing the High Activity of Ceramic Metallics in the Oxygen Evolution Reaction: Nickel Materials as a Case Study. ChemSusChem, 2016, 9, 2928-2932.	3.6	25
110	Comparative pan-cancer DNA methylation analysis reveals cancer common and specific patterns. Briefings in Bioinformatics, 2016, 18, bbw063.	3.2	119
111	Synthesis of Organized Layered Carbon by Selfâ€Templating of Dithiooxamide. Advanced Materials, 2016, 28, 6727-6733.	11.1	59
112	Band gap and morphology engineering of TiO ₂ by silica and fluorine co-doping for efficient ultraviolet and visible photocatalysis. RSC Advances, 2016, 6, 63117-63130.	1.7	30
113	In-situ fabrication of Ag/g -C3N4 composite materials with improved photocatalytic activity by coordination-driven assembly of precursors. Ceramics International, 2016, 42, 5575-5581.	2.3	18
114	Electric Control of Friction on Silicon Studied by Atomic Force Microscope. Nano, 2015, 10, 1550038.	0.5	12
115	Identifying overlapping mutated driver pathways by constructing gene networks in cancer. BMC Bioinformatics, 2015, 16, S3.	1.2	21
116	The Complex Role of Carbon Nitride as a Sensitizer in Photoelectrochemical Cells. Advanced Optical Materials, 2015, 3, 1052-1058.	3.6	41
117	Supramolecular Chemistry in Molten Sulfur: Preorganization Effects Leading to Marked Enhancement of Carbon Nitride Photoelectrochemistry. Advanced Functional Materials, 2015, 25, 6265-6271.	7.8	89
118	Systematic DNA methylation analysis of multiple cell lines reveals common and specific patterns within and across tissues of origin. Human Molecular Genetics, 2015, 24, 4374-4384.	1.4	39
119	Silver Phosphate/Graphitic Carbon Nitride as an Efficient Photocatalytic Tandem System for Oxygen Evolution. ChemSusChem, 2015, 8, 1350-1358.	3.6	178
120	Nickel nitride as an efficient electrocatalyst for water splitting. Journal of Materials Chemistry A, 2015, 3, 8171-8177.	5.2	408
121	Tuning the Morphology of g-C ₃ N ₄ for Improvement of Z-Scheme Photocatalytic Water Oxidation. ACS Applied Materials & Interfaces, 2015, 7, 15285-15293.	4.0	256
122	Fabrication of P25/Ag3PO4/graphene oxide heterostructures for enhanced solar photocatalytic degradation of organic pollutants and bacteria. Applied Catalysis B: Environmental, 2015, 166-167, 231-240.	10.8	269
123	Ag/ZnO/graphene oxide heterostructure for the removal of rhodamine B by the synergistic adsorption–degradation effects. Ceramics International, 2015, 41, 4231-4237.	2.3	42
124	Detecting Overlapping Protein Complexes by Rough-Fuzzy Clustering in Protein-Protein Interaction Networks. PLoS ONE, 2014, 9, e91856.	1.1	43
125	Tetragonal–Orthorhombic–Cubic Phase Transitions in Ag ₂ Se Nanocrystals. Chemistry of Materials, 2014, 26, 5647-5653.	3.2	69
126	Synthesis and improved photocatalytic activity of ultrathin TiO2 nanosheets with nearly 100% exposed (001) facets. Ceramics International, 2014, 40, 16817-16823.	2.3	33

#	Article	IF	Citations
127	Solid state synthesis of Fe2P nanoparticles as high-performance anode materials for nickel-based rechargeable batteries. Journal of Power Sources, 2014, 253, 360-365.	4.0	42
128	Bifunctional TiO ₂ /Ag ₃ PO ₄ /graphene composites with superior visible light photocatalytic performance and synergistic inactivation of bacteria. RSC Advances, 2014, 4, 18627-18636.	1.7	167
129	A Network Based Method for Analysis of IncRNA-Disease Associations and Prediction of IncRNAs Implicated in Diseases. PLoS ONE, 2014, 9, e87797.	1.1	150
130	Fabrication of a Stable Superhydrophobic Polypropylene Surface by Utilizing Acetone as a Non-Solvent. Journal of Dispersion Science and Technology, 2013, 34, 134-139.	1.3	12
131	Hydrothermal synthesis and visible-light photocatalytic activity of α-Fe2O3/TiO2 composite hollow microspheres. Ceramics International, 2013, 39, 8633-8640.	2.3	81
132	Morphology-controlled synthesis of Ag3PO4 microcubes with enhanced visible-light-driven photocatalytic activity. Ceramics International, 2013, 39, 9715-9720.	2.3	48
133	Synthesis of reduced graphene oxide/Cu nanoparticle composites and their tribological properties. RSC Advances, 2013, 3, 26086.	1.7	64
134	Long non-coding RNAs function annotation: a global prediction method based on bi-colored networks. Nucleic Acids Research, 2013, 41, e35-e35.	6.5	174
135	Graphene-spindle shaped TiO2 mesocrystal composites: Facile synthesis and enhanced visible light photocatalytic performance. Journal of Hazardous Materials, 2013, 261, 342-350.	6.5	111
136	Fabrication of Ag ₃ PO ₄ -Graphene Composites with Highly Efficient and Stable Visible Light Photocatalytic Performance. ACS Catalysis, 2013, 3, 363-369.	5.5	562
137	Facile synthesis of graphene oxide-enwrapped Ag3PO4 composites with highly efficient visible light photocatalytic performance. Materials Letters, 2013, 93, 28-31.	1.3	85
138	Template-assisted hydrothermal synthesis and photocatalytic activity of novel TiO2 hollow nanostructures. Ceramics International, 2013, 39, 4969-4974.	2.3	36
139	Facile hydrothermal synthesis and photocatalytic activity of rod-like nanosized silver tungstate. Micro and Nano Letters, 2012, 7, 1285-1288.	0.6	48
140	Tribological behavior of a charged atomic force microscope tip on graphene oxide films. Nanotechnology, 2012, 23, 495703.	1.3	16
141	Hydrothermal synthesis and characterisation of glutamine-modified rod-like hydroxyapatite nanoparticles. Micro and Nano Letters, 2012, 7, 1292-1295.	0.6	4
142	Preparation, characterization and photocatalytic activities of ZrWMoO8/Ag composites with coreâ€"shell structure. Applied Surface Science, 2012, 261, 593-597.	3.1	10
143	Graphite-Controlled Fabrication of Ultrathin WSe ₂ Nanosheets with Tower-Like Structure and Their Tribological Properties. Tribology Transactions, 2012, 55, 297-301.	1.1	6
144	A new one-step synthesis method for coating multi-walled carbon nanotubes with iron oxide nanorods. Journal of Nanoparticle Research, 2012, 14, 1.	0.8	9

#	Article	IF	Citations
145	Controllable synthesis, characterization and growth mechanism of three-dimensional hierarchical PbWO4 microstructures. CrystEngComm, 2011, 13, 5119.	1.3	21
146	Greener solid state synthesis of a ternary lanthanum complex at room temperature. Journal of Coordination Chemistry, 2011, 64, 1617-1625.	0.8	7
147	Templated-assisted one-dimensional silica nanotubes: synthesis and applications. Journal of Materials Chemistry, 2011, 21, 6122.	6.7	106
148	Hierarchical construction of PbS architectures based on the adsorption and sustained release of H2S by TBAB. Materials Chemistry and Physics, 2011, 129, 1011-1019.	2.0	3
149	Fabrication of carbon-encapsulated tungsten diselenide nanorods. Materials Letters, 2011, 65, 1231-1233.	1.3	3
150	A facile one-step hydrothermal method to produce graphene–MoO3 nanorod bundle composites. Materials Letters, 2011, 65, 2341-2344.	1.3	35
151	Synthesis and characterization of "mulberry―like Fe3O4/multiwalled carbon nanotube nanocomposites. Journal of Nanoparticle Research, 2011, 13, 5457-5464.	0.8	7
152	Synthesis and tribological properties of hexagonal titanium silicon carbide crystals. Crystal Research and Technology, 2011, 46, 178-182.	0.6	5
153	Synthesis and tribological properties of copper matrix solid selfâ€lubricant composites reinforced with NbSe ₂ nanoparticles. Crystal Research and Technology, 2011, 46, 195-200.	0.6	22
154	Synthesis and tribological properties of NbSe ₃ nanofibers and NbSe ₂ microsheets. Crystal Research and Technology, 2011, 46, 400-404.	0.6	19
155	synthesis of highâ€quality crystalline αâ€MoO ₃ nanobelts. Crystal Research and Technology, 2011, 46, 409-412.	0.6	29
156	Hydrothermal synthesis of MoO ₃ nanobeltâ€graphene composites. Crystal Research and Technology, 2011, 46, 1195-1201.	0.6	57
157	Facile morphologyâ€controlled hydrothermal synthesis of flowerâ€like selfâ€organized ZnO architectures. Crystal Research and Technology, 2011, 46, 1189-1194.	0.6	7
158	Bis (\hat{l} / $\!\!4$ -4-amino-3,5-dimethyl-4H-1,2,4-triazole)bis [diiodidozinc(II)]. Acta Crystallographica Section E: Structure Reports Online, 2011, 67, m26-m26.	0.2	3
159	A Computational Method Based on the Integration of Heterogeneous Networks for Predicting Disease-Gene Associations. PLoS ONE, 2011, 6, e24171.	1.1	22
160	Surfactantâ€assisted synthesis of novel starâ€like PbWO ₄ hierarchical architectures. Crystal Research and Technology, 2010, 45, 1094-1098.	0.6	11
161	Solidâ€State Reactions of Lanthanide(III) with Sodium Salicylate and 8â€Hydroxyquinoline at Room Temperature. Synthesis and Reactivity in Inorganic, Metal Organic, and Nano Metal Chemistry, 2004, 34, 67-77.	1.8	2
162	Characterization of lanthanum salicylate complex nanoparticles in situ synthesized in silica matrix by a sol–gel process. Materials Letters, 2004, 58, 757-761.	1.3	4

#	Article	lF	CITATIONS
163	Synthesis and luminescence of Sr2CeO4 superfine particles by citrate-gel method. Materials Letters, 2004, 58, 48-50.	1.3	45
164	Syntheses of RE(Hsal) $3\hat{A}$ -2H2O (RE=Eu, Y; Hsal \hat{a} -2C7H5O $3\hat{a}$ -3) by solid-state reactions at room temperature. Materials Letters, 2003, 57, 3609-3613.	1.3	3
165	Predicting the Early Risk of Ophthalmopathy in Graves' Disease Patients Using TCR Repertoire. SSRN Electronic Journal, 0, , .	0.4	0
166	Transportation, Germs, Culture: A Dynamic Graph Model of COVID-19 Outbreak. SSRN Electronic Journal, 0, , .	0.4	0